每日一题,每日一练.12卡牌分组(放弃造了一半的轮子直接上车真香)

本文探讨了如何通过计算最大公约数来判断一副牌是否能按照特定规则分组。示例展示了不同输入下算法的正确性和应用,同时分享了使用Python实现这一算法的经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 卡牌分组 给定一副牌,每张牌上都写着一个整数。

此时,你需要选定一个数字 X,使我们可以将整副牌按下述规则分成 1 组或更多组:

每组都有 X 张牌。 组内所有的牌上都写着相同的整数。 仅当你可选的 X >= 2 时返回 true。

示例 1:

输入:[1,2,3,4,4,3,2,1] 输出:true 解释:可行的分组是 [1,1],[2,2],[3,3],[4,4]

示例 2:

输入:[1,1,1,2,2,2,3,3] 输出:false 解释:没有满足要求的分组。

示例 3:

输入:[1] 输出:false 解释:没有满足要求的分组。

示例 4:

输入:[1,1] 输出:true 解释:可行的分组是 [1,1]

示例 5:

输入:[1,1,2,2,2,2] 输出:true 解释:可行的分组是 [1,1],[2,2],[2,2]

提示:

1 <= deck.length <= 10000
0 <= deck[i] < 10000

这道题目实际上是求最大公约数,我们对每个数字计数(是的我在这写了一个计数算法),然后把所有数字的个数放到一块求他们的最大公约数就可以了,因为只有被整除才能分组成功(是的我在这又写了一个一半最大公约数算法),那么在写了一半以后,终于发现Python扩展库里这俩功能都有(555555555)

代码如下:

import math
import collections
class Solution:
    def hasGroupsSizeX(self, deck: List[int]) -> bool:
        a=collections.Counter(deck)
        return reduce(math.gcd,a.keys())

你问我半夜两点造轮子是什么感觉?
接近心跳骤停吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值