-
跳表,在有序链表的基础上增加了"跳跃"的功能,使得有序链表的的搜索,删除,添加的平均时间复杂度是O(logn)
-
Redis中的SortedSet,LevelDB中的MemTable都用到了跳表
-
Redis,LevelDB都是著名的Key-Value数据库
-
跳表的搜索
- 从顶层链表的首元素开始,从左往右搜索,直到找到一个大于或等于目标的元素,或者到达当前链表的尾部
- 如果该元素等于目标元素,则表明该元素已被找到
- 如果该元素大于目标元素或已经到达链表的尾部,则退回当前层的前一个元素,然后转入下一层经行搜索
import java.util.Comparator;
public class SkipList<K, V> {
private static final int MAX_LEVEL = 32;
private static final double P = 0.25;
private int size;
private Comparator<K> comparator;
/**
* 有效层数
*/
private int level;
/**
* 不存放任何K-V
*/
private Node<K, V> first;
public SkipList(Comparator<K> comparator) {
this.comparator = comparator;
first = new Node<>(null, null, MAX_LEVEL);
}
public SkipList() {
this(null);
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
public V get(K key) {
keyCheck(key);
Node<K, V> node = first;
for (int i = level - 1; i >= 0; i--) {
int cmp = -1;
while (node.nexts[i] != null
&& (cmp = compare(key, node.nexts[i].key)) > 0) {
node = node.nexts[i];
}
if (cmp == 0) return node.nexts[i].value;
}
return null;
}
public V put(K key, V value) {
keyCheck(key);
Node<K, V> node = first;
Node<K, V>[] prevs = new Node[level];
for (int i = level - 1; i >= 0; i--) {
int cmp = -1;
while (node.nexts[i] != null
&& (cmp = compare(key, node.nexts[i].key)) > 0) {
node = node.nexts[i];
}
if (cmp == 0) { // 节点是存在的
V oldV = node.nexts[i].value;
node.nexts[i].value = value;
return oldV;
}
prevs[i] = node;
}
// 新节点的层数
int newLevel = randomLevel();
// 添加新节点
Node<K, V> newNode = new Node<>(key, value, newLevel);
// 设置前驱和后继
for (int i = 0; i < newLevel; i++) {
if (i >= level) {
first.nexts[i] = newNode;
} else {
newNode.nexts[i] = prevs[i].nexts[i];
prevs[i].nexts[i] = newNode;
}
}
// 节点数量增加
size++;
// 计算跳表的最终层数
level = Math.max(level, newLevel);
return null;
}
public V remove(K key) {
keyCheck(key);
Node<K, V> node = first;
Node<K, V>[] prevs = new Node[level];
boolean exist = false;
for (int i = level - 1; i >= 0; i--) {
int cmp = -1;
while (node.nexts[i] != null
&& (cmp = compare(key, node.nexts[i].key)) > 0) {
node = node.nexts[i];
}
prevs[i] = node;
if (cmp == 0) exist = true;
}
if (!exist) return null;
// 需要被删除的节点
Node<K, V> removedNode = node.nexts[0];
// 数量减少
size--;
// 设置后继
for (int i = 0; i < removedNode.nexts.length; i++) {
prevs[i].nexts[i] = removedNode.nexts[i];
}
// 更新跳表的层数
int newLevel = level;
while (--newLevel >= 0 && first.nexts[newLevel] == null) {
level = newLevel;
}
return removedNode.value;
}
private int randomLevel() {
int level = 1;
while (Math.random() < P && level < MAX_LEVEL) {
level++;
}
return level;
}
private void keyCheck(K key) {
if (key == null) {
throw new IllegalArgumentException("key must not be null.");
}
}
private int compare(K k1, K k2) {
return comparator != null
? comparator.compare(k1, k2)
: ((Comparable<K>)k1).compareTo(k2);
}
private static class Node<K, V> {
K key;
V value;
Node<K, V>[] nexts;
public Node(K key, V value, int level) {
this.key = key;
this.value = value;
nexts = new Node[level];
}
@Override
public String toString() {
return key + ":" + value + "_" + nexts.length;
}
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("一共" + level + "层").append("\n");
for (int i = level - 1; i >= 0; i--) {
Node<K, V> node = first;
while (node.nexts[i] != null) {
sb.append(node.nexts[i]);
sb.append(" ");
node = node.nexts[i];
}
sb.append("\n");
}
return sb.toString();
}
}
本文详细介绍了跳表的数据结构及其在有序链表上的优化,使得搜索、删除、添加操作的平均时间复杂度达到O(logn)。跳表在Redis的SortedSet和LevelDB的MemTable中有所应用,是Key-Value数据库提高性能的重要工具。代码示例展示了跳表的Java实现,包括搜索、插入和删除操作。
844

被折叠的 条评论
为什么被折叠?



