CountDownLatch Race

本文介绍了一个使用Java实现的虚拟赛马程序,通过模拟多个赛马的跑步过程,展示了如何利用线程、并发和计数器等技术特性来创建一个有趣的赛马竞赛模拟。


import java.util.*;
import java.util.concurrent.*;

class Race
{
    private Random rand = new Random();
   
    private int distance = rand.nextInt(250);
    private CountDownLatch start;
    private CountDownLatch finish;
   
    private List<String> horses = new ArrayList<String>();
   
    public Race(String... names)
    {
        this.horses.addAll(Arrays.asList(names));
    }
   
    public void run()
        throws InterruptedException
    {
        System.out.println("And the horses are stepping up to the gate...");
        final CountDownLatch start = new CountDownLatch(1);
        final CountDownLatch finish = new CountDownLatch(horses.size());
        final List<String> places =
            Collections.synchronizedList(new ArrayList<String>());
       
        for (final String h : horses)
        {
            new Thread(new Runnable() {
                public void run() {
                    try
                    {
                        System.out.println(h +
                            " stepping up to the gate...");
                        start.await();
                       
                        int traveled = 0;
                        while (traveled < distance)
                        {
                            // In a 0-2 second period of time....
                            Thread.sleep(rand.nextInt(3) * 1000);
                           
                            // ... a horse travels 0-14 lengths
                            traveled += rand.nextInt(15);
                            System.out.println(h +
                                " advanced to " + traveled + "!");
                        }
                        finish.countDown();
                        System.out.println(h +
                            " crossed the finish!");
                        places.add(h);
                    }
                    catch (InterruptedException intEx)
                    {
                        System.out.println("ABORTING RACE!!!");
                        intEx.printStackTrace();
                    }
                }
            }).start();
        }

        System.out.println("And... they're off!");
        start.countDown();       

        finish.await();
        System.out.println("And we have our winners!");
        System.out.println(places.get(0) + " took the gold...");
        System.out.println(places.get(1) + " got the silver...");
        System.out.println("and " + places.get(2) + " took home the bronze.");
       
       
    }

 public int getDistance() {
  return distance;
 }

 public void setDistance(int distance) {
  this.distance = distance;
 }
}

public class CDLApp
{
    public static void main(String[] args)
        throws InterruptedException, java.io.IOException
    {
        System.out.println("Prepping...");
       
        Race r = new Race(
            "Beverly Takes a Bath",
            "RockerHorse",
            "Phineas",
            "Ferb",
            "Tin Cup",
            "I'm Faster Than a Monkey",
            "Glue Factory Reject"
            );
       
        System.out.println("It's a race of " + r.getDistance() + " lengths");
       
        System.out.println("Press Enter to run the race....");
        System.in.read();
       
        r.run();
    }
}

内容概要:本文档是一份关于交换路由配置的学习笔记,系统地介绍了网络设备的远程管理、交换机与路由器的核心配置技术。内容涵盖Telnet、SSH、Console三种远程控制方式的配置方法;详细讲解了VLAN划分原理及Access、Trunk、Hybrid端口的工作机制,以及端口镜像、端口汇聚、端口隔离等交换技术;深入解析了STP、MSTP、RSTP生成树协议的作用与配置步骤;在路由部分,涵盖了IP地址配置、DHCP服务部署(接口池与全局池)、NAT转换(静态与动态)、静态路由、RIP与OSPF动态路由协议的配置,并介绍了策略路由和ACL访问控制列表的应用;最后简要说明了华为防火墙的安全区域划分与基本安全策略配置。; 适合人群:具备一定网络基础知识,从事网络工程、运维或相关技术岗位1-3年的技术人员,以及准备参加HCIA/CCNA等认证考试的学习者。; 使用场景及目标:①掌握企业网络中常见的交换与路由配置技能,提升实际操作能力;②理解VLAN、STP、OSPF、NAT、ACL等核心技术原理并能独立完成中小型网络搭建与调试;③通过命令示例熟悉华为设备CLI配置逻辑,为项目实施和故障排查提供参考。; 阅读建议:此笔记以实用配置为主,建议结合模拟器(如eNSP或Packet Tracer)动手实践每一条命令,对照拓扑理解数据流向,重点关注VLAN间通信、路由选择机制、安全策略控制等关键环节,并注意不同设备型号间的命令差异。
多旋翼无人机组合导航系统-多源信息融合算法(Matlab代码实现)内容概要:本文围绕多旋翼无人机组合导航系统,重点介绍了基于多源信息融合算法的设计与实现,利用Matlab进行代码开发。文中采用扩展卡尔曼滤波(EKF)作为核心融合算法,整合GPS、IMU(惯性测量单元)、里程计和电子罗盘等多种传感器数据,提升无人机在复杂环境下的定位精度与稳定性。特别是在GPS信号弱或丢失的情况下,通过IMU惯导数据辅助导航,实现连续可靠的位姿估计。同时,文档展示了完整的算法流程与Matlab仿真实现,涵盖传感器数据预处理、坐标系转换、滤波融合及结果可视化等关键环节,体现了较强的工程实践价值。; 适合人群:具备一定Matlab编程基础和信号处理知识,从事无人机导航、智能控制、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于多旋翼无人机的高精度组合导航系统设计;②用于教学与科研中理解多传感器融合原理与EKF算法实现;③支持复杂环境下无人机自主飞行与定位系统的开发与优化。; 阅读建议:建议结合Matlab代码与理论推导同步学习,重点关注EKF的状态预测与更新过程、多传感器数据的时间同步与坐标变换处理,并可通过修改噪声参数或引入更多传感器类型进行扩展实验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值