暂时不解释,仅作为记录:
import torch
from torchvision import datasets, models, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import time
import numpy as np
import matplotlib.pyplot as plt
import os
image_transforms = {
'cut_image_classify': transforms.Compose([
transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),
transforms.RandomRotation(degrees=15),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
'cut_image_test': transforms.Compose([
transforms.Resize(size=256),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
}
dataset = 'datasets'
# train_directory = os.path.join(dataset, 'train')
train_directory = os.path.join(dataset, 'cut_image_classify')
# valid_directory = os.path.join(dataset, 'valid')
valid_directory = os.path.join(dataset, 'cut_image_test')
batch_size = 4
num_classes = 5
data = {
'cut_image_classify': datasets.ImageFolder(root=train_directory, transform=image_transforms['cut_image_classify']),
'cut_image_test': datasets.ImageFolder(root=valid_directory, transform=image_transforms['cut_image_test'])
}
train_data_size = len(data['cut_image_classify'])
valid_data_size = len(data['cut_image_test'])
train_data = DataLoader(data['cut_image_classify'], batch_size=batch_size, shuffle=True)
valid_data = DataLoader(data['cut_image_test'], batch_size=batch_size, shuffle=True)
print(train_data_size, valid_data_size)
ResNet50 = models.resnet50(pretrained=True)
# 在PyTorch中加载模型时,所有参数的‘requires_grad’字段默认设置为true。
# 这意味着对参数值的每一次更改都将被存储,以便在用于训练的反向传播图中使用。
# 这增加了内存需求。
# 由于预训练的模型中的大多数参数已经训练好了,因此将requires_grad字段重置为false。
for param in ResNet50.parameters():
param.requires_grad = False
fc_inputs = ResNet50.fc.in_features
ResNet50.fc = nn.Sequential(
nn.Linear(fc_inputs, 256),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(256, 5),
nn.LogSoftmax(dim=1)
)
# # 用GPU进行训练
# resnet50 = resnet50.to('cuda:0')
# 用CPU训练
resnet50 = ResNet50.to('cpu')
# loss_func = nn.CrossEntropyLoss()
loss_func = nn.NLLLoss()
optimizer = optim.Adam(resnet50.parameters(), lr=0.0002)
def train_and_valid(model, loss_function, optimizer, epochs=25):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
history = []
best_acc = 0.0
best_epoch = 0
for epoch in range(epochs):
epoch_start = time.time()
print("Epoch: {}/{}".format(epoch + 1, epochs))
model.train()
train_loss = 0.0
train_acc = 0.0
valid_loss = 0.0
valid_acc = 0.0
for i, (inputs, labels) in enumerate(train_data):
inputs = inputs.to(device)
labels = labels.to(device)
# 因为这里梯度是累加的,所以每次记得清零
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
ret, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
acc = torch.mean(correct_counts.type(torch.FloatTensor))
train_acc += acc.item() * inputs.size(0)
with torch.no_grad():
model.eval()
for j, (inputs, labels) in enumerate(valid_data):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
loss = loss_function(outputs, labels)
valid_loss += loss.item() * inputs.size(0)
ret, predictions = torch.max(outputs.data, 1)
correct_counts = predictions.eq(labels.data.view_as(predictions))
acc = torch.mean(correct_counts.type(torch.FloatTensor))
valid_acc += acc.item() * inputs.size(0)
avg_train_loss = train_loss / train_data_size
avg_train_acc = train_acc / train_data_size
avg_valid_loss = valid_loss / valid_data_size
avg_valid_acc = valid_acc / valid_data_size
history.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])
if best_acc < avg_valid_acc:
best_acc = avg_valid_acc
best_epoch = epoch + 1
torch.save(model, 'models/' + dataset + '_model_' + str(epoch + 1) + '.pt')
epoch_end = time.time()
print(
"Epoch: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation: Loss: {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(
epoch + 1, avg_train_loss, avg_train_acc * 100, avg_valid_loss, avg_valid_acc * 100,
epoch_end - epoch_start
))
print("Best Accuracy for validation : {:.4f} at epoch {:03d}".format(best_acc, best_epoch))
# torch.save(model, 'models/' + dataset + '_model_' + str(epoch + 1) + '.pt')
return model, history
if __name__ == "__main__":
num_epochs = 600
trained_model, history = train_and_valid(resnet50, loss_func, optimizer, num_epochs)
torch.save(history, 'models/' + dataset + '_history.pt')
history = np.array(history)
plt.plot(history[:, 0:2])
plt.legend(['Tr Loss', 'Val Loss'])
plt.xlabel('Epoch Number')
plt.ylabel('Loss')
plt.ylim(0, 2)
plt.savefig(dataset + '_loss_curve.png')
plt.show()
plt.plot(history[:, 2:4])
plt.legend(['Tr Accuracy', 'Val Accuracy'])
plt.xlabel('Epoch Number')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.savefig(dataset + '_accuracy_curve.png')
plt.show()

本文介绍了如何使用预训练的ResNet50模型进行迁移学习,针对'cut_image_classify'和'cut_image_test'数据集,通过调整模型结构和优化器,进行训练和验证,最终保存最佳模型并绘制损失和准确率曲线。
2万+

被折叠的 条评论
为什么被折叠?



