Codeforces Round #549 (Div. 2) D. The Beatles(数学)

本文探讨了在一个包含多个快餐店的环形路径上,寻找从任意城市出发并返回原地的最短和最长旅行周期的问题。通过分析与计算,提出了有效的算法解决方案。

D. The Beatles
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Recently a Golden Circle of Beetlovers was found in Byteland. It is a circle route going through n⋅k cities. The cities are numerated from 1 to n⋅k, the distance between the neighboring cities is exactly 1 km.

Sergey does not like beetles, he loves burgers. Fortunately for him, there are n fast food restaurants on the circle, they are located in the 1-st, the (k+1)-st, the (2k+1)-st, and so on, the ((n−1)k+1)-st cities, i.e. the distance between the neighboring cities with fast food restaurants is k km.

Sergey began his journey at some city s and traveled along the circle, making stops at cities each l km (l>0), until he stopped in s once again. Sergey then forgot numbers s and l, but he remembers that the distance from the city s to the nearest fast food restaurant was a km, and the distance from the city he stopped at after traveling the first l km from s to the nearest fast food restaurant was b km. Sergey always traveled in the same direction along the circle, but when he calculated distances to the restaurants, he considered both directions.

Now Sergey is interested in two integers. The first integer x is the minimum number of stops (excluding the first) Sergey could have done before returning to s. The second integer y is the maximum number of stops (excluding the first) Sergey could have done before returning to s.

Input
The first line contains two integers n and k (1≤n,k≤100000) — the number of fast food restaurants on the circle and the distance between the neighboring restaurants, respectively.

The second line contains two integers a and b (0≤a,b≤k2) — the distances to the nearest fast food restaurants from the initial city and from the city Sergey made the first stop at, respectively.

Output
Print the two integers x and y.

Examples
inputCopy
2 3
1 1
outputCopy
1 6
inputCopy
3 2
0 0
outputCopy
1 3
inputCopy
1 10
5 3
outputCopy
5 5
Note
In the first example the restaurants are located in the cities 1 and 4, the initial city s could be 2, 3, 5, or 6. The next city Sergey stopped at could also be at cities 2,3,5,6. Let’s loop through all possible combinations of these cities. If both s and the city of the first stop are at the city 2 (for example, l=6), then Sergey is at s after the first stop already, so x=1. In other pairs Sergey needs 1,2,3, or 6 stops to return to s, so y=6.

In the second example Sergey was at cities with fast food restaurant both initially and after the first stop, so l is 2, 4, or 6. Thus x=1, y=3.

In the third example there is only one restaurant, so the possible locations of s and the first stop are: (6,8) and (6,4). For the first option l=2, for the second l=8. In both cases Sergey needs x=y=5 stops to go to s.

解析

有一个结论就是这种环从一个点再次回到这个点,步长为l,总长度为x ,那么步数为x/gcd(x,l)

然后在看题目中的数据
l的取值只能为 ik+b-a 在以k为长度的环中 终点在起点后面
或者 i
k+k-a-b 在以k位长度的环中 终点在起点前面
那么只要枚举i就能找到所有的步数,取最大最小值即可

code

#include<bits/stdc++.h>
#define pb push_back
#define ll long long
using namespace std;
const int N=3e5+10;
int main()
{
    #ifdef local
        freopen("D://r.txt","r",stdin);
    #endif
    ll n,k,a,b,mi=1e18,mx=0;
    cin>>n>>k>>a>>b;
    ll l1 =(b-a+k)%k;
    ll l2 =(k-a-b+k)%k;
    ll c =n*k;
    for(int i=0;i<n;i++){
        mx=max(mx,c/__gcd(c,l1));
        mx=max(mx,c/__gcd(c,l2));
        mi=min(mi,c/__gcd(c,l1));
        mi=min(mi,c/__gcd(c,l2));
        l1+=k;
        l2+=k;
    }
    cout<<mi<<' '<<mx<<endl;
    return 0;
}

考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成与缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例与代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划与运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真与优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率与创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建与求解过程,重点关注不确定性处理方法与需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习与交叉验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值