D. The Beatles
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Recently a Golden Circle of Beetlovers was found in Byteland. It is a circle route going through n⋅k cities. The cities are numerated from 1 to n⋅k, the distance between the neighboring cities is exactly 1 km.
Sergey does not like beetles, he loves burgers. Fortunately for him, there are n fast food restaurants on the circle, they are located in the 1-st, the (k+1)-st, the (2k+1)-st, and so on, the ((n−1)k+1)-st cities, i.e. the distance between the neighboring cities with fast food restaurants is k km.
Sergey began his journey at some city s and traveled along the circle, making stops at cities each l km (l>0), until he stopped in s once again. Sergey then forgot numbers s and l, but he remembers that the distance from the city s to the nearest fast food restaurant was a km, and the distance from the city he stopped at after traveling the first l km from s to the nearest fast food restaurant was b km. Sergey always traveled in the same direction along the circle, but when he calculated distances to the restaurants, he considered both directions.
Now Sergey is interested in two integers. The first integer x is the minimum number of stops (excluding the first) Sergey could have done before returning to s. The second integer y is the maximum number of stops (excluding the first) Sergey could have done before returning to s.
Input
The first line contains two integers n and k (1≤n,k≤100000) — the number of fast food restaurants on the circle and the distance between the neighboring restaurants, respectively.
The second line contains two integers a and b (0≤a,b≤k2) — the distances to the nearest fast food restaurants from the initial city and from the city Sergey made the first stop at, respectively.
Output
Print the two integers x and y.
Examples
inputCopy
2 3
1 1
outputCopy
1 6
inputCopy
3 2
0 0
outputCopy
1 3
inputCopy
1 10
5 3
outputCopy
5 5
Note
In the first example the restaurants are located in the cities 1 and 4, the initial city s could be 2, 3, 5, or 6. The next city Sergey stopped at could also be at cities 2,3,5,6. Let’s loop through all possible combinations of these cities. If both s and the city of the first stop are at the city 2 (for example, l=6), then Sergey is at s after the first stop already, so x=1. In other pairs Sergey needs 1,2,3, or 6 stops to return to s, so y=6.
In the second example Sergey was at cities with fast food restaurant both initially and after the first stop, so l is 2, 4, or 6. Thus x=1, y=3.
In the third example there is only one restaurant, so the possible locations of s and the first stop are: (6,8) and (6,4). For the first option l=2, for the second l=8. In both cases Sergey needs x=y=5 stops to go to s.
解析
有一个结论就是这种环从一个点再次回到这个点,步长为l,总长度为x ,那么步数为x/gcd(x,l)
然后在看题目中的数据
l的取值只能为 ik+b-a 在以k为长度的环中 终点在起点后面
或者 ik+k-a-b 在以k位长度的环中 终点在起点前面
那么只要枚举i就能找到所有的步数,取最大最小值即可
code
#include<bits/stdc++.h>
#define pb push_back
#define ll long long
using namespace std;
const int N=3e5+10;
int main()
{
#ifdef local
freopen("D://r.txt","r",stdin);
#endif
ll n,k,a,b,mi=1e18,mx=0;
cin>>n>>k>>a>>b;
ll l1 =(b-a+k)%k;
ll l2 =(k-a-b+k)%k;
ll c =n*k;
for(int i=0;i<n;i++){
mx=max(mx,c/__gcd(c,l1));
mx=max(mx,c/__gcd(c,l2));
mi=min(mi,c/__gcd(c,l1));
mi=min(mi,c/__gcd(c,l2));
l1+=k;
l2+=k;
}
cout<<mi<<' '<<mx<<endl;
return 0;
}