R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。
R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。
关于作者:
- 张丹(Conan), 程序员Java,R,PHP,Javascript
- weibo:@Conan_Z
- blog: http://blog.fens.me
- email: bsspirit@gmail.com
转载请注明出处:
http://blog.fens.me/r-math-derivative/
前言
高等数学是每个大学生都要学习的一门数学基础课,同时也可能是考完试后最容易忘记的一门知识。
我在学习高数的时候绞尽脑汁,但始终都不知道为何而学。生活和工作基本用不到,就算是在计算机行业和金融行业,能直接用到高数的地方也少之又少,学术和实际应用真是相差太远了。
不过,R语言为我打开了一道高数应用的大门,R语言不仅能方便地实现高等数学的计算,还可以很容易地把一篇论文中的高数公式应用于产品的实践中。
因为R语言我重新学习了高数,让生活中充满数学,生活会变得更有意思。
本节并不是完整的高数计算手册,仅介绍了导数计算和偏导数计算的R语言实现。
目录
- 导数计算
- 初等函数的导数公式
- 二阶导数计算
- 偏导数计算
1. 导数计算
导数(Derivative)是微分学的基本概念,用于计算函数的极值。导数的定义为,当函数y=f(x)在x0的某个领域内有定义,当自变量x在x0处取得增加Δx(点x0+Δx仍在该邻域内)时,相应的函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx趋于0时的极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数,记为f`(x0),即
也记作 y’|x=x0 ,dy/dx|x=x0 或 df(x)/dx|x=x0。
通过R语言可以使用deriv()函数直接进行导数的计算,比如要计算 y=x^3 的导数,根据导数计算公式,用于手动计算的变形结果为 y’=3x^2,当x=1时,y’=3,当x=2时,y’=12。
本节的系统环境
- Win7 64bit
- R: 3.1.1 x86_64-w64-mingw32/x64 (64-bit)
用R语言程序实现,代码如下。
> dx mode(dx) # 查看dx变量类型
[1] "expression"
> x eval(dx) # 运行求导计算
[1] 1 8 # 原函数的计算结果
attr(,"gradient")