一.描述
在Scikit-learn中,估计器是一个重要的角色,分类器和回归器都属于估计器,是机器学习算法的实现。score()方法返回的是估计器得分也就是分类准确率
二.实例
-
使用准确性指标评价函数accuracy_score()
from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split as tsplit from sklearn.metrics import accuracy_score X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = tsplit(X, y, test_size=0.1) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) accuracy_score(y_test, y_pred) knn.score(X_test, y_test)
-
使用估价器的score()方法
from sklearn.datasets import load_diabetes from sklearn.svm import SVR from sklearn.model_selection import train_test_split from sklearn import metrics X, y = load_iris(return_X_y=True) svr = SVR() svr.fit(X_train, y_train) y_pred = svr.predict(X_test) # 均方误差指标评价函数 metrics.mean_squared_error(y_test, y_pred) # 中位数绝对误差指标评价函数 metrics.median_absolute_error(y_test, y_pred) # 复相关系数指标评价函数 metrics.r2_score(y_test, y_pred) # 直接使用估价器的score()方法 svr.score(X_test, y_test)