MQ消息队列基础1

消息队列的作用:

异步,削峰,降低系统耦合性。

1.通过异步处理提高系统性能:(削峰,减少响应时间,比如如果没有消息队列,那么可能100条数据同时打入数据库,而有了消息队列,则数据会一条一条写入数据库,遵守消息队列的先进先出规则)。

2.降低系统耦合性:不同进程之间传递消息时,两个进程之间耦合度过高,改动一个进程,则必须修改另一个进程,为了隔离这两个进程,在两进程间抽离出一层(一个模块),两进程之间的通信,必须通过消息队列来传递,单独修改某一个进程,不会影响另一个;(比如你去送信,如果接受人的地址改变了,那么你送信的路线也会改变,但是如果中间多个邮局,那么即使收信人的地址改变了,也和你没关系,你只要把信放在邮局就ok了,你的路线永远是从你家到邮局这条固定的。)

常见的MQ:ActiveMq,RabbitMQ,RocketMQ,Kafka

 

名称

ActiveMQ

RabbitMQRocketMQKafka
单击吞吐量万级,吞吐量比RockerMQ和Kafka要低了一个数量级万级,吞吐量比RocketMQ和kafka要低了一个数量级十万级,RocketMQ也是可以支撑高吞吐的一种MQ十万级别,这是kafka最大的有点,就是吞吐量高。一般配合大数据类的系统来进行实时数据计算,日志采集等场景
topic数量对吞吐量的影响  topic可以达到几百,几千个的级别,吞吐量会有较小幅度的下降。这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topictopic从几十个到几百个的时候,吞吐量会大幅度下降。因此在同等机器下,kafka尽量保证topic数量不要过多,如果要支撑大规模topic,需要增加更多的机器资源
时效性ms级微秒级,这是rabbitmq的一大特点,延迟是最低的ms级延迟在ms级以内
高可用性高,基于主从架构实现高可用高,基于主从架构实现高科应非常高,分布式架构非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
消息可靠性有较低的概率丢失数据开启持久化使数据写入磁盘,数据丢失概率基本可以忽略(除非数据还没吸入磁盘呢rabbitmq就挂了)经过参数优化配置,可以做到零丢失经过参数优化配置,消息可以做到零丢失
功能支持mq领域的功能及其完备基于erlang开发,所以并发能力很强,性能极好,延时很低mq功能较为完善,还是分布式的,扩展性很好功能比较简单,主要支持简单的mq功能,在大数据领域的实时计算以及日志采集被大规模使用,
优劣势总结

非常成熟,功能强大,在业内大量的公司以及项目中都有应用

 

偶尔会有较低概率丢失消息

 

而且现在社区以及国内应用都越来越少,官方社区现在对ActiveMQ 5.x维护越来越少,几个月才发布一个版本

 

而且确实主要是基于解耦和异步来用的,较少在大规模吞吐的场景中使用

 

erlang语言开发,性能极其好,延时很低;

 

吞吐量到万级,MQ功能比较完备

 

而且开源提供的管理界面非常棒,用起来很好用

 

社区相对比较活跃,几乎每个月都发布几个版本分

 

在国内一些互联网公司近几年用rabbitmq也比较多一些

 

但是问题也是显而易见的,RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重

 

而且erlang开发,国内有几个公司有实力做erlang源码级别的研究和定制?如果说你没这个实力的话,确实偶尔会有一些问题,你很难去看懂源码,你公司对这个东西的掌控很弱,基本职能依赖于开源社区的快速维护和修复bug。

 

而且rabbitmq集群动态扩展会很麻烦,不过这个我觉得还好。其实主要是erlang语言本身带来的问题。很难读源码,很难定制和掌控

接口简单易用,而且毕竟在阿里大规模应用过,有阿里品牌保障

 

日处理消息上百亿之多,可以做到大规模吞吐,性能也非常好,分布式扩展也很方便,社区维护还可以,可靠性和可用性都是ok的,还可以支撑大规模的topic数量,支持复杂MQ业务场景

 

而且一个很大的优势在于,阿里出品都是java系的,我们可以自己阅读源码,定制自己公司的MQ,可以掌控

 

社区活跃度相对较为一般,不过也还可以,文档相对来说简单一些,然后接口这块不是按照标准JMS规范走的有些系统要迁移需要修改大量代码

 

还有就是阿里出台的技术,你得做好这个技术万一被抛弃,社区黄掉的风险,那如果你们公司有技术实力我觉得用RocketMQ挺好的

kafka的特点其实很明显,就是仅仅提供较少的核心功能,但是提供超高的吞吐量,ms级的延迟,极高的可用性以及可靠性,而且分布式可以任意扩展

 

同时kafka最好是支撑较少的topic数量即可,保证其超高吞吐量

 

而且kafka唯一的一点劣势是有可能消息重复消费,那么对数据准确性会造成极其轻微的影响,在大数据领域中以及日志采集中,这点轻微影响可以忽略

 

这个特性天然适合大数据实时计算以及日志收集

综上所述,各种对比之后,我个人倾向于是:

一般的业务系统要引入MQ,最早大家都用ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;

后来大家开始用RabbitMQ,但是确实erlang语言阻止了大量的java工程师去深入研究和掌控他,对公司而言,几乎处于不可控的状态,但是确实人是开源的,比较稳定的支持,活跃度也高;

不过现在确实越来越多的公司,会去用RocketMQ,确实很不错,但是我提醒一下自己想好社区万一突然黄掉的风险,对自己公司技术实力有绝对自信的,我推荐用RocketMQ,否则回去老老实实用RabbitMQ吧,活跃开源社区,绝对不会黄

所以中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择;大型公司,基础架构研发实力较强,用RocketMQ是很好的选择

如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。

一下是网上比较好的消息队列基础文章:

https://www.jianshu.com/p/36a7775b04ec

https://blog.youkuaiyun.com/hellozpc/article/details/81436980#RabbitMQ_14

https://www.jianshu.com/p/5c01d5198217

https://blog.youkuaiyun.com/cws1214/article/details/52922267

https://www.cnblogs.com/laojiao/p/9573016.html

 

 

该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值