基本排序算法及分析(四):快速排序
快速排序:
1
/*----------------------------------------------------------------------------------------------
2
Quick_sort.h
3
快速排序:确定一个枢纽元,一次遍历后将数组划分成两个部分,第一部分均比枢纽元小
4
第二部分都比枢纽元大,然后对这两个数组进行快速排序,是一种递归的方法
5
平均运行时间O(Nlog(N)),最坏运行时间O(N^2)
6
最坏情形:对于预排序的序列。
7
对与枢纽元相等的元素处理:
8
i,j都停止:会比较相等元素,但是可以划分成长度相当的两个子数组
9
i,j都不停止,不会比较相等元素,但是可能产生长度不平衡的两个子数组(与枢纽元相等的元素较多时)
10
枢纽元的选取:
11
1. 选取第一个元素做枢纽元:对于(部分)预排序的序列运行时间O(N^2)
12
2. 随机生成枢纽元:能避免上述问题,但是产生枢纽元的代价高
13
3. 三数中值分割法:选取左端,右端,中间位置三个元素的中值
14
----------------------------------------------------------------------------------------------*/
15
#ifndef QUICK_SORT_H
16
#define
QUICK_SORT_H
17
18
#include
"
typedef.h
"
/* typedef int T 待排序的元素类型只要在这个文件中控制即可. */
19
#include
"
swap.h
"
/*交换两个元素值*/
20
21
/* 选取第一个元素做枢纽元的情形----返回枢纽元位置*/
22
int
Quick_sort_divide(T
*
a,
int
begin,
int
end)
23
{
24
T key = a[begin];
25
26
while(begin < end)
27
{
28
while(begin < end && a[end] >= key) --end;
29
a[begin] = a[end]; //不能--end,下面循环还要给现在的end位置赋值呢!
30
//swap(a[begin],a[end]);
31
while(begin < end && a[begin] <= key) ++begin;
32
a[end] = a[begin];
33
//swap(a[begin],a[end]);
34
}
35
a[begin] = key;
36
37
return begin;
38
}
39
40
/*三数中值割分法----选取枢纽元*/
41
const
int
&
median3(T
*
a,
int
begin,
int
end)
42
{
43
int mid = (begin + end)/2;
44
//将三个位置的元素,按顺序摆好,一会儿begin,end位置的元素就无需参加比较
45
if(a[mid] < a[begin]) swap(a[mid],a[begin]);
46
if(a[end] < a[begin]) swap(a[end],a[begin]);
47
if(a[mid] > a[end]) swap(a[mid],a[end]);
48
49
swap(a[mid],a[end-1]); //将枢纽元放到倒数第二个位置
50
return a[end-1];
51
}
52
53
54
/*三数中值分割法----分割:返回枢纽元位置*/
55
int
Quick_sort_divide_3v(T
*
a,
int
begin,
int
end)
56
{
57
T key = median3(a,begin,end);
58
int tag = end - 1;
59
begin = begin + 1; //选取枢纽元时原begin位置的元素已设置成小于key的
60
end = end - 2; //原end位置值已设置成大于key的,end-1位置为key,都不用考虑
61
while(begin < end)
62
{
63
while(a[begin] < key) ++begin;
64
while(a[end] > key) --end;
65
if(begin < end) swap(a[begin],a[end]);
66
}
67
swap(a[begin],a[tag]);
68
return begin;
69
}
70
71
/*一次分割*/
72
void
Quick_sort_step(T
*
a,
int
begin,
int
end)
73
{
74
if(begin < end)
75
{
76
int k = Quick_sort_divide_3v(a,begin,end); //三数中值割分法
77
//int k = Quick_sort_divide(a,begin,end); //选第一个元素做枢纽元
78
Quick_sort_step(a,begin,k-1);
79
Quick_sort_step(a,k+1,end);
80
}
81
}
82
/*快速排序*/
83
void
Quick_sort(T
*
a,
int
n)
84
{
85
//if(n > 10) 当元素个数少时不必用快速插入法
86
Quick_sort_step(a,0,n-1);
87
//else Insertion_sort(a,n);
88
}
89
90
#endif
/*----------------------------------------------------------------------------------------------2
Quick_sort.h3
快速排序:确定一个枢纽元,一次遍历后将数组划分成两个部分,第一部分均比枢纽元小4
第二部分都比枢纽元大,然后对这两个数组进行快速排序,是一种递归的方法5
平均运行时间O(Nlog(N)),最坏运行时间O(N^2)6
最坏情形:对于预排序的序列。7
对与枢纽元相等的元素处理:8
i,j都停止:会比较相等元素,但是可以划分成长度相当的两个子数组9
i,j都不停止,不会比较相等元素,但是可能产生长度不平衡的两个子数组(与枢纽元相等的元素较多时)10
枢纽元的选取:11
1. 选取第一个元素做枢纽元:对于(部分)预排序的序列运行时间O(N^2)12
2. 随机生成枢纽元:能避免上述问题,但是产生枢纽元的代价高13
3. 三数中值分割法:选取左端,右端,中间位置三个元素的中值14
----------------------------------------------------------------------------------------------*/
15
#ifndef QUICK_SORT_H16
#define
QUICK_SORT_H
17

18
#include
"
typedef.h
"
/* typedef int T 待排序的元素类型只要在这个文件中控制即可. */
19
#include
"
swap.h
"
/*交换两个元素值*/
20

21
/* 选取第一个元素做枢纽元的情形----返回枢纽元位置*/
22
int
Quick_sort_divide(T
*
a,
int
begin,
int
end)23
{24
T key = a[begin];25

26
while(begin < end)27
{28
while(begin < end && a[end] >= key) --end;29
a[begin] = a[end]; //不能--end,下面循环还要给现在的end位置赋值呢! 30
//swap(a[begin],a[end]);31
while(begin < end && a[begin] <= key) ++begin;32
a[end] = a[begin];33
//swap(a[begin],a[end]);34
}35
a[begin] = key;36
37
return begin;38
}
39

40
/*三数中值割分法----选取枢纽元*/
41
const
int
&
median3(T
*
a,
int
begin,
int
end)42
{43
int mid = (begin + end)/2;44
//将三个位置的元素,按顺序摆好,一会儿begin,end位置的元素就无需参加比较45
if(a[mid] < a[begin]) swap(a[mid],a[begin]);46
if(a[end] < a[begin]) swap(a[end],a[begin]);47
if(a[mid] > a[end]) swap(a[mid],a[end]);48
49
swap(a[mid],a[end-1]); //将枢纽元放到倒数第二个位置50
return a[end-1];51
}
52

53

54
/*三数中值分割法----分割:返回枢纽元位置*/
55
int
Quick_sort_divide_3v(T
*
a,
int
begin,
int
end)56
{57
T key = median3(a,begin,end);58
int tag = end - 1;59
begin = begin + 1; //选取枢纽元时原begin位置的元素已设置成小于key的60
end = end - 2; //原end位置值已设置成大于key的,end-1位置为key,都不用考虑61
while(begin < end)62
{63
while(a[begin] < key) ++begin;64
while(a[end] > key) --end;65
if(begin < end) swap(a[begin],a[end]);66
}67
swap(a[begin],a[tag]);68
return begin;69
}
70

71
/*一次分割*/
72
void
Quick_sort_step(T
*
a,
int
begin,
int
end)73
{ 74
if(begin < end)75
{76
int k = Quick_sort_divide_3v(a,begin,end); //三数中值割分法77
//int k = Quick_sort_divide(a,begin,end); //选第一个元素做枢纽元78
Quick_sort_step(a,begin,k-1);79
Quick_sort_step(a,k+1,end);80
}81
}
82
/*快速排序*/
83
void
Quick_sort(T
*
a,
int
n)84
{85
//if(n > 10) 当元素个数少时不必用快速插入法 86
Quick_sort_step(a,0,n-1);87
//else Insertion_sort(a,n);88
}
89

90
#endif

3387

被折叠的 条评论
为什么被折叠?



