目录
背景
TensorFlow 是一个强大的开源框架,用于实现深度学习和人工智能模型。它最初由 Google 开发,现在已经成为广泛使用的机器学习框架之一。
TensorFlow 简单来说就是一个用于创建和运行机器学习模型的库。它的核心概念是张量(Tensor)。张量是一个多维数组,可以是向量、矩阵、数组等,是 TensorFlow 中最基本的数据结构。
TensorFlow 的使用场景非常广泛,尤其是在图像识别、语音识别、自然语言处理等领域。例如,可以使用 TensorFlow 建立一个图像识别模型,通过训练数据集让模型自动对图片进行分类,从而实现图像自动识别。
除了机器学习之外,TensorFlow 还可用于计算科学的高性能计算和数值计算等领域。同时,它还可以在 CPU、GPU 和 TPU 等各种硬件上运行,因此可适用于各种应用场合。
环境测试
Here's a simple "Hello, World!" program written in TensorFlow:
import tensorflow as tf
# The Session graph is empty. Add operations to the graph before calling run().
tf.compat.v1.disable_eager_execution()
# Define the constant tensor
hello = tf.constant('Hello, TensorFlow!')
# Create a session to run the computation graph
with tf.compat.v1.Session() as sess:
# Run the session and print the tensor
print(sess.run(hello))
This pr