The essence, structure and application of recursive algorithm

本文深入探讨了递归算法的精髓在于处理结构自相似问题,递归分为处理特定值和整个结构两种类型。通过实例展示了如何用递归计算数组的最大值和求和,并解释了递归结构。此外,文章还提供了反转数组元素的递归解决方案,说明了递归算法可以等价于循环实现。最后,通过输出数字的递归方法展示了序列的特殊结构自相似性。

Introduction

In common algorithm strategies, I always think recursion is full of aesthetic feeling. But if you don’t have a deep understanding to it, aesthetic feeling will becomes a headache. So this article will thoroughly introduce recursive algorithm, let’s enjoy the beauty of recursive algorithm.

What’s the essence of recursion?

Most articles say that recursion is you call yourself in a function or method. Yes, it’s true in form, but what is the purpose of recursion and when should we apply recursion algorithm? That’s a good question.

The essence of recursion is loop, and its purpose is to solve the problem of structure self-similarity. But what’s the problem of structure self-similarity?

The problem of structure self-similarity refers to the substructure of the structure still keeps the nature of the structure itself, but the scale is different. For example, the following data structures belong to structural self similarity:

Array, linked list, binary tree, sequence and so on.

Strictly speaking, there is no difference between an array and a sequence, but they are distinguished here for the sake of below smooth writing.

Maybe you have some questions about description above. Don’t worry, keep looking down.

What’s the structure of recursion?

After careful analysis, it is found that there are two types of recursive algorithm, each of which has a different structure.

  • Recursion for a certain value(RfV): In general, there is a return value, such as finding the maximum value of an array or the sum of array elements.
  • Recursion to entire structure(RtS): Generally, there is no return value, which is directly operated on the object, such as array inversion, clearing binary tree, etc.

For RfV, the common program structure is as follows.

/*
 * @param obj A data structure or data which contains data.
 * @param idx Index of element, which can be used to extract element and recursive boundary. It's an optional parameter.
 * @return The final result, such as the maximum.
 */
def RfV(obj, opt(idx))
    if isBoundary
        return current value
    pre = RfV(obj, opt(idx + step size))
    some necessary operations related to "pre" 
    return current value

Now, let’s solve an algorithm problem.

Given an array, the maximun and sum are calculated by recursion algorithm.

package tech.feily.acm_icpc.recur;

/*
 * @author Feily Zhang
 */
public class ArrMax {
    
    public static int max(int[] arr, int i) {
        if (i == 0) return arr[0];
        int pre = max(arr, i - 1);
        return pre > arr[i] ? pre : arr[i];
    }
    
    public static int sum(int[] arr, int i) {
        if (i == 0) return arr[0];
        return sum(arr, i - 1) + arr[i];
    }
    
    public static void main(String[] args) {
        int[] arr = {8, 3, 2, 9, 7, 1, 5, 4};
        System.out.println(max(arr, arr.length - 1));
        System.out.println(sum(arr, arr.length - 1));
    }

}

Can we solve above RfV problem without return statement? Of course, but we can only solve it through object reference. As shown below.

package tech.feily.acm_icpc.recur;

/*
 * @author Feily Zhang
 */
public class ArrMax1 {


    class Int {
        private int val;
        public void setVal(int val) {
            this.val = val;
        }
        public int getVal() {
            return val;
        }
    }
    
    public static void max(int[] arr, int i, Int j) {
        if (i != arr.length) {
            if (i == 0) {
                j.setVal(arr[0]);
                max(arr, i + 1, j);
            }
            if (arr[i] > j.getVal()) {
                j.setVal(arr[i]);
                max(arr, i + 1, j);
            } else max(arr, i + 1, j);
        }
    }
    
    public static void sum(int[] arr, int i, Int j) {
        if (i != arr.length) {
            if (i == 0) {
                j.setVal(arr[0]);
                sum(arr, i + 1, j);
            } else {
                j.setVal(arr[i] + j.getVal());
                sum(arr, i + 1, j);
            }
        }
    }
    
    public static void main(String[] args) {
        int[] arr = {8, 3, 2, 9, 7, 1, 5, 4};
        Int j = new ArrMax1().new Int();
        max(arr, 0, j);
        System.out.println(j.getVal());
        j.setVal(0);    // clear object j
        sum(arr, 0, j);
        System.out.println(j.getVal());
    }

}

Through above statements, we can easily find that RfV problem have two types program structure. One is realized by return value, the other by object reference. The main step of the former is to advance recursively first, return recursively and deal with it after touching the recursion boundary, and the latter is to move forward recursively while processing, until it touches the recursion boundary.

Because I said that the essence of recursion is loop, so recursive algorithm can be realized by “for” loop equivalently. The initial value, cycle condition and step size of cycle variable of the “for” loop can easily get by analyzing recursion algorithm.

For RtS, the common program structure is as follows.

def RtS(obj, opt(idx))
    if !isBoundary
        do something
        RtS(obj, opt(idx + step size))

Now, let’s solve an algorithm problem.

Invert the elements of a given array.

package tech.feily.acm_icpc.recur;

import java.util.Arrays;

/*
 * @author Feily Zhang
 */
public class Invert {

    public static void invert(int[] arr, int l, int r) {
        if (l < r) {
            arr[l] = arr[l] + arr[r];
            arr[r] = arr[l] - arr[r];
            arr[l] = arr[l] - arr[r];
            invert(arr, l + 1, r - 1);
        }
    }
    
    public static void main(String[] args) {
        int[] arr = {8, 3, 2, 9, 7, 1, 5, 4};
        System.out.println(Arrays.toString(arr));
        invert(arr, 0, arr.length - 1);
        System.out.println(Arrays.toString(arr));
    }

}

The above method solve the RtS problem by processing before recursion. Can we solve it by processing after recursion? Of course.

package tech.feily.acm_icpc.recur;

import java.util.Arrays;

/*
 * @author Feily Zhang
 */
public class Invert1 {

    public static void invert(int[] arr, int l, int r) {
        if (l < r) {
            invert(arr, l + 1, r - 1);
            arr[l] = arr[l] + arr[r];
            arr[r] = arr[l] - arr[r];
            arr[l] = arr[l] - arr[r];
        }
    }

    public static void main(String[] args) {
        int[] arr = {8, 3, 2, 9, 7, 1, 5, 4};
        System.out.println(Arrays.toString(arr));
        invert(arr, 0, arr.length - 1);
        System.out.println(Arrays.toString(arr));
    }
    
}

Sequence, a special structure self-similarity

The reason why sequence is a special issue of structure self-similarity is its elements are calculated by formula, so its structure self-similarity is not as obvious as array and linked list. Let’s feel it through a question.

Output digit by digit from high to low, and there is a space after each number.

package tech.feily.acm_icpc.recur;

/*
 * @author Feily zhang
 */
public class Output {

    public static void output(int num) {
        if (num < 10) System.out.print(num + " ");
        else {
            output(num / 10);
            System.out.print(num % 10 + " ");
        }
    }

    public static String output1(int num) {
        if (num < 10) return num + " ";
        String s = output1(num / 10);
        return s + num % 10 + " ";
    }
    
    public static void main(String[] args) {
        output(13579);
        System.out.println("\n" + output1(13579));
    }

}

In fact, the sequence given by 13579 / 10 constitutes an array of elements [13579, 1357, 135, 13, 1]. Because the elements are computed in real time, the index can be omitted.
在这里插入图片描述

内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值