hihoCoder P1050 : 树中的最长路
题目
时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,小Ho发现他不仅仅可以拼凑成一棵二叉树!还可以拼凑成一棵多叉树——好吧,其实就是更为平常的树而已。
但是不管怎么说,小Ho喜爱的玩具又升级换代了,于是他更加爱不释手(其实说起来小球和木棍有什么好玩的是吧= =)。小Ho手中的这棵玩具树现在由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了不同的数字,并且这些数字都是出于1..N的范围之内,每根木棍都连接着两个不同的小球,并且保证任意两个小球间都不存在两条不同的路径可以互相到达。总而言之,是一个相当好玩的玩具啦!
但是小Hi瞧见小Ho这个样子,觉得他这样沉迷其中并不是一件好事,于是寻思着再找点问题让他来思考思考——不过以小Hi的水准,自然是手到擒来啦!
于是这天食过早饭后,小Hi便对着又拿着树玩具玩的不亦乐乎的小Ho道:“你说你天天玩这个东西,我就问你一个问题,看看你可否知道?”
“不好!”小Ho想都不想的拒绝了。
“那你就继续玩吧,一会回国的时候我不叫上你了~”小Hi严肃道。
“诶!别别别,你说你说,我听着呢。”一向习惯于开启跟随模式的小Ho忍不住了,马上喊道。
小Hi满意的点了点头,随即说道:“这才对嘛,我的问题很简单,就是——你这棵树中哪两个结点之间的距离最长?当然,这里的距离是指从一个结点走到另一个结点经过的木棍数。”。
“啊?”小Ho低头看了看手里的玩具树,困惑了。
提示一:路总有折点,路径也不例外!
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为一个整数N,意义如前文所述。
每组测试数据的第2~N行,每行分别描述一根木棍,其中第i+1行为两个整数Ai,Bi,表示第i根木棍连接的两个小球的编号。
对于20%的数据,满足N<=10。
对于50%的数据,满足N<=10^3。
对于100%的数据,满足N<=10^5,1<=Ai<=N, 1<=Bi<=N
小Hi的Tip:那些用数组存储树边的记得要开两倍大小哦!
输出
对于每组测试数据,输出一个整数Ans,表示给出的这棵树中距离最远的两个结点之间相隔的距离。
样例输入
8
1 2
1 3
1 4
4 5
3 6
6 7
7 8
样例输出
6
题解
先随便找一个点进行DFS找出离该点最远的电,不难证明这个点一定是这棵树的直径的一个端点,然后我们再对这个点进行DFS找出离该点最远的点,距离即为树中的最长路,即树的直径。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 100005
using namespace std;
int N;
struct edge
{
int x,y;
int nxt;
}e[maxn*2];
int lnk[maxn],vis[maxn];
int tot,now,ans;
void add(int x,int y)
{
e[tot].x=x;
e[tot].y=y;
e[tot].nxt=lnk[x];
lnk[x]=tot++;
}
void dfs(int x,int y)
{
vis[x]=1;
if(y>ans)
{
now=x;
ans=y;
}
for(int i=lnk[x];i!=-1;i=e[i].nxt)
{
if(!vis[e[i].y]) dfs(e[i].y,y+1);
}
}
int main()
{
while(~scanf("%d", &N))
{
memset(lnk,-1,sizeof(lnk));
tot=0;
int a,b;
for(int i=1;i<N;i++)
{
scanf("%d%d",&a,&b);
add(a,b);add(b,a);
}
memset(vis,0,sizeof(vis));
ans=0;
dfs(1,0);
memset(vis,0,sizeof(vis));
ans=0;
dfs(now,0);
printf("%d\n",ans);
}
}