1099. Build A Binary Search Tree (30)

本文介绍了一种根据给定的二叉树结构和一组整数键来构建唯一二叉搜索树的方法,并通过层级遍历输出该树的节点值。文章提供了一个C++实现示例,包括创建树结构、填充键值及进行层级遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1099. Build A Binary Search Tree (30)
时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B
判题程序 Standard 作者 CHEN, Yue

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
这里写图片描述
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format “left_index right_index”, provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42

#define _CRT_SECURE_NO_WARNINGS
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <iomanip>
#include <queue>


using namespace std;

const int MaxN = 110;
int seq[MaxN],cur = 0;

typedef struct tnode
{
    int data;
    struct tnode * lchild;
    struct tnode * rchild;
}TNode;

TNode * Ptr[MaxN] = { 0 };

void Inorder(TNode * root)
{
    if (!root) return;

    Inorder(root->lchild);
    root->data = seq[cur++];
    Inorder(root->rchild);
}


TNode * CreateTree(int n)
{
    for (int i = 0; i < n; ++i)
    {
        Ptr[i] = new TNode;
        Ptr[i]->lchild = Ptr[i]->rchild = NULL;
    }

    for (int i = 0; i < n; ++i)
    {
        int left_index, right_index;
        cin >> left_index >> right_index;

        if (left_index != -1)
            Ptr[i]->lchild = Ptr[left_index];

        if (right_index != -1)
            Ptr[i]->rchild = Ptr[right_index];
    }

    for (int i = 0; i < n; ++i)
        cin >> seq[i];
    sort(seq, seq + n);

    Inorder(Ptr[0]);

    return Ptr[0];
}


void LevelOrder(TNode * root)
{
    if (!root) return;
    queue<TNode *>que;
    que.push(root);

    while (que.size())
    {
        TNode * node = que.front(); que.pop();
        if (node->lchild)que.push(node->lchild);
        if (node->rchild)que.push(node->rchild);

        cout << node->data;
        if (que.size())
            cout << " ";
        delete node;
    }
}

int main()
{
#ifdef _DEBUG
    freopen("data.txt", "r+", stdin);
#endif // _DEBUG

    std::ios::sync_with_stdio(false);

    int n;
    cin >> n;

    TNode * root = CreateTree(n);
    LevelOrder(root);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值