JUC
1. 什么是JUC
2. 进程和线程
// 本地方法,底层的C++,java无法直接操作硬件
private native void start0();
- 查看CPU核数的方法
- 任务管理器 - 性能 - CPU
- 我的电脑-右键管理-设备管理器-处理器
- 线程有几个状态
public enum State {
// 新生
NEW,
// 运行
RUNNABLE,
// 阻塞
BLOCKED,
// 等待
WAITING,
// 超时等待
TIMED_WAITING,
// 终止
TERMINATED;
}
3. Lock锁
- idea 快捷键
Ctrl + Alt +T
公平锁:先来的先执行
非公平锁:十分不公平,可以插队(默认)
- Synchronized
package com.xiaofan;
public class SaleTicketDemo01 {
public static void main(String[] args) {
// 并发: 多线程操作同一个资源类, 把资源类丢入线程
final Ticket ticket = new Ticket();
// @FunctionalInterface 函数式接口, jdk1.8 lambda 表达式(参数)->{代码}
new Thread(()->{ for (int i = 0; i < 31; i++) ticket.sale(); }, "A").start();
new Thread(()->{ for (int i = 0; i < 31; i++) ticket.sale(); }, "B").start();
new Thread(()->{ for (int i = 0; i < 31; i++) ticket.sale(); }, "C").start();
}
}
// 资源类 OOP
class Ticket {
// 属性,方法
private int number = 30;
// 卖票的方式
public synchronized void sale() {
if (number > 0) {
System.out.println(Thread.currentThread().getName() + "卖出了第" + (number--) + "张票, 剩余票数:" + number);
}
}
}
- Lock
package com.xiaofan;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class SaleTicketDemo02 {
public static void main(String[] args) {
// 并发: 多线程操作同一个资源类, 把资源类丢入线程
final Ticket2 ticket2 = new Ticket2();
// @FunctionalInterface 函数式接口, jdk1.8 lambda 表达式(参数)->{代码}
new Thread(()->{ for (int i = 0; i < 31; i++) ticket2.sale(); }, "A").start();
new Thread(()->{ for (int i = 0; i < 31; i++) ticket2.sale(); }, "B").start();
new Thread(()->{ for (int i = 0; i < 31; i++) ticket2.sale(); }, "C").start();
}
}
// Lock三部曲
// 1. new ReentrantLock();
// 2. lock.lock();
// 3. lock.unlock(); 解锁
class Ticket2 {
// 属性,方法
private int number = 30;
private Lock lock = new ReentrantLock();
// 卖票的方式
public void sale() {
lock.lock();
try {
if (number > 0) {
System.out.println(Thread.currentThread().getName() + "卖出了第" + (number--) + "张票, 剩余票数:" + number);
}
}catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
- Synchronized 和 Lock的区别
- Synchronized 内置的Java关键字, Lock是一个Java类
- Synchronized 无法判断获取锁的状态, Lock可以判断是否获取到了锁
- Synchronized 会自动释放锁, Lock必须要手动释放锁,如果不释放锁,死锁!
- Synchronized 线程1(获得锁,阻塞)、线程2(等待,傻傻的等);Lock锁就不一定会等待下去
- Synchronized 可重入锁,不可以中断的,非公平锁;Lock,可重入锁,可以判断锁,非公平锁(可自己设置)
- Synchronized 适合锁少量的代码同步问题, Lock适合锁大量的同步代码!
4. 生产者和消费者
4.1. 生产者和消费者问题Synchronized版
面试手写的: 单例模式、排序算法、生产者和消费者、死锁
package com.xiaofan.pc;
/**
* 线程之间的通信问题: 生产者和消费者问题! 等待环形, 通知唤醒
* 线程交替执行 A B 操作同一个变量 num = 0
* A num + 1
* B num - 1
*/
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(()->{
try {
for (int i = 0; i < 10; i++) data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "A").start();
new Thread(()->{
try {
for (int i = 0; i < 10; i++) data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "B").start();
}
}
// 判断等待, 业务, 通知
class Data {
private int number = 0;
//+1
public synchronized void increment() throws InterruptedException {
if (number != 0) {
this.wait();
}
number ++;
System.out.println(Thread.currentThread().getName() + " => " + number);
// 通知其他线程, 我+1完毕了
this.notifyAll();
}
//-1
public synchronized void decrement() throws InterruptedException {
if (number == 0) {
this.wait();
}
number --;
System.out.println(Thread.currentThread().getName() + " => " + number);
// 通知其他线程, 我+1完毕了
this.notifyAll();
}
}
- 问题存在,A,B,C,D 四个线程!
package com.xiaofan.pc;
/**
* 线程之间的通信问题: 生产者和消费者问题! 等待环形, 通知唤醒
* 线程交替执行 A B 操作同一个变量 num = 0
* A num + 1
* B num - 1
*/
public class A {
public static void main(String[] args) {
Data data = new Data();
new Thread(()->{
try {
for (int i = 0; i < 10; i++) data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "A").start();
new Thread(()->{
try {
for (int i = 0; i < 10; i++) data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "B").start();
new Thread(()->{
try {
for (int i = 0; i < 10; i++) data.decrement();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "C").start();
new Thread(()->{
try {
for (int i = 0; i < 10; i++) data.increment();
} catch (InterruptedException e) {
e.printStackTrace();
}
}, "D").start();
}
}
// 判断等待, 业务, 通知
class Data {
private int number = 0;
//+1
public synchronized void increment() throws InterruptedException {
while (number != 0) {
this.wait();
}
number ++;
System.out.println(Thread.currentThread().getName() + " => " + number);
// 通知其他线程, 我+1完毕了
this.notifyAll();
}
//-1
public synchronized void decrement() throws InterruptedException {
while (number == 0) {
this.wait();
}
number --;
System.out.println(Thread.currentThread().getName() + " => " + number);
// 通知其他线程, 我+1完毕了
this.notifyAll();
}
}
4.2. JUC版本的生产者和消费者
package com.xiaofan.pc;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* 线程之间的通信问题: 生产者和消费者问题! 等待环形, 通知唤醒
* 线程交替执行 A B 操作同一个变量 num = 0
* A num + 1
* B num - 1
*/
public class B {
public static void main(String[] args) {
Data1 data1 = new Data1();
new Thread(()->{ for (int i = 0; i < 10; i++) data1.increment(); }, "A").start();
new Thread(()->{ for (int i = 0; i < 10; i++) data1.decrement(); }, "B").start();
new Thread(()->{ for (int i = 0; i < 10; i++) data1.increment(); }, "C").start();
new Thread(()->{ for (int i = 0; i < 10; i++) data1.decrement(); }, "D").start();
}
}
// 判断等待, 业务, 通知
class Data1 {
private int number = 0;
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
//+1
public void increment() {
lock.lock();
try{
while (number != 0) {
condition.await();
}
number ++;
System.out.println(Thread.currentThread().getName() + " => " + number);
// 通知其他线程, 我+1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
//-1
public void decrement() {
lock.lock();
try {
while (number == 0) {
condition.await();
}
number --;
System.out.println(Thread.currentThread().getName() + " => " + number);
// 通知其他线程, 我+1完毕了
condition.signalAll();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
4.3. Condition实现精准通知唤醒
package com.xiaofan.pc;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* 多线程轮流打印 A-B-C
*/
public class C {
public static void main(String[] args) {
Data3 data3 = new Data3();
new Thread(()->{ for (int i = 0; i < 10; i++) data3.printA();}, "线程1").start();
new Thread(()->{ for (int i = 0; i < 10; i++) data3.printB();}, "线程2").start();
new Thread(()->{ for (int i = 0; i < 10; i++) data3.printC();}, "线程3").start();
}
}
class Data3 {
private Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
private int number = 1; // 1A 2B 3C
public void printA() {
lock.lock();
try {
// 业务-判断-执行-通知
while(number != 1) {
condition1.await();
}
number = 2;
System.out.println(Thread.currentThread().getName() + "=> A...");
// 唤醒指定的人
condition2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printB() {
lock.lock();
try {
// 业务-判断-执行-通知
while(number != 2) {
condition2.await();
}
number = 3;
System.out.println(Thread.currentThread().getName() + "=> B...");
condition3.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void printC() {
lock.lock();
try {
// 业务-判断-执行-通知
while(number != 3) {
condition3.await();
}
number = 1;
System.out.println(Thread.currentThread().getName() + "=> C...");
condition1.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}
5. 8锁的现象
如何判断锁的是谁!对象 Class
- 源代码Github地址
- 总结
- new this 具体的一个对象
- static Class 唯一的一个模板
6. 集合类不安全
6.1. List不安全
package com.xiaofan.unsafe;
import java.util.*;
import java.util.concurrent.CopyOnWriteArrayList;
// java.util.ConcurrentModificationException 并发修改异常!
public class ListTest {
public static void main(String[] args) {
// 单线程安全
/*List<String> list = Arrays.asList("1", "2", "3");
list.forEach(System.out::println);*/
// 并发下ArrayList不安全的吗?synchronized:
/**
* 解决方案:
* 1. List<String> list = new Vector<>(); Vector是1.0出来的,List是1.2出来的
* 2. List<String> list = Collections.synchronizedList(new ArrayList<>());
* 3. List<String> list = new CopyOnWriteArrayList<>();
*/
// CopyOnWrite 写入时复制 COW 计算机程序设计的一种优化策略
// 多个线程调用的时候,list读取的时候,固定的,写入(覆盖), 在写入的时候避免覆盖,造成数据问题!读写分离
// CopyOnWriteArrayList 比 Vector牛逼的地方是底层应用了Lock锁,而Vector应用了synchronized
List<String> list = new CopyOnWriteArrayList<>();
for (int i = 1; i <= 20; i++) {
new Thread(()->{
list.add(UUID.randomUUID().toString().substring(0, 5));
System.out.println(list);
}, String.valueOf(i)).start();
}
}
}
6.2. Set不安全
package com.xiaofan.unsafe;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;
import java.util.UUID;
import java.util.concurrent.CopyOnWriteArraySet;
// 同理:java.util.ConcurrentModificationException 并发修改异常!
public class SetTest {
public static void main(String[] args) {
/**
* 解决方案:
* 1. Set<String>set = Collections.synchronizedSet(new HashSet<>());
* 2. Set<String>set = new CopyOnWriteArraySet<>();
*/
Set<String>set = new CopyOnWriteArraySet<>();
for (int i = 1; i <= 20; i++) {
new Thread(()->{
set.add(UUID.randomUUID().toString().substring(0, 5));
System.out.println(set);
}, String.valueOf(i)).start();
}
}
}
- HashSet底层是什么?
public HashSet() {
map = new HashMap<>();
}
// add set 本质就是map的key是无法重复的!
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
// 不变的值
private static final Object PRESENT = new Object();
6.3. Map不安全
package com.xiaofan.unsafe;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.ConcurrentHashMap;
// java.util.ConcurrentModificationException 并发修改异常
public class MapTest {
public static void main(String[] args) {
/**
* 解决方案:
* 1. Map<String, String> map = Collections.synchronizedMap(new HashMap<>());
* 2. Map<String, String> map = new ConcurrentHashMap<>();
*/
Map<String, String> map = Collections.synchronizedMap(new HashMap<>());
for (int i = 1; i <= 10; i++) {
new Thread(()->{
map.put(Thread.currentThread().getName(), UUID.randomUUID().toString().substring(0, 5));
System.out.println(map);
}).start();
}
}
}
6.4. HashMap数据结构及2的整数次幂探究
6.5. HashMap加载因子及转红黑树探究
6.6. ConcurrentHashMap的原理
7. Callable
- 可以有返回值
- 可以抛出异常
- 方法不容,run() / call()
package com.xiaofan.callable;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
public class CallableTest {
public static void main(String[] args) throws ExecutionException, InterruptedException {
FutureTask<String> futureTask1 = new FutureTask<>(new MyThread());
FutureTask<String> futureTask2 = new FutureTask<>(new MyThread());
new Thread(futureTask1, "A").start();
new Thread(futureTask2, "B").start(); // 结果会被缓存,效率高
String result1 = futureTask1.get(); // 这个方法可能会产生阻塞,把他放到最后,或者使用异步通信来处理
System.out.println(result1);
String result2 = futureTask1.get();
System.out.println(result2);
}
}
class MyThread implements Callable<String> {
@Override
public String call() {
System.out.println(Thread.currentThread().getName() + " call...");
return "1024";
}
}
8. 常用辅助类
-
从javadoc的描述可以得出:
- CountDownLatch:一个或者多个线程,等待其他多个线程完成某件事情之后才能执行;
- CyclicBarrier:多个线程互相等待,直到到达同一个同步点,再继续一起执行。
对于CountDownLatch来说,重点是“一个线程(多个线程)等待”,而其他的N个线程在完成“某件事情”之后,可以终止,也可以等待。而对于CyclicBarrier,重点是多个线程,在任意一个线程没有完成,所有的线程都必须互相等待,然后继续一起执行。
CountDownLatch是计数器,线程完成一个记录一个,只不过计数不是递增而是递减,而CyclicBarrier更像是一个阀门,需要所有线程都到达,阀门才能打开,然后继续执行。
8.1.CountDownLatch
减计数器
package com.xiaofan;
import java.util.concurrent.CountDownLatch;
// 计数器
public class CountDownLatchDemo {
public static void main(String[] args) throws InterruptedException {
// 总数是6,必须要执行任务的时候,再使用!
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 1; i <= 6; i++) {
new Thread(()->{
System.out.println(Thread.currentThread().getName() + " go out...");
countDownLatch.countDown(); // 数量减1
}, String.valueOf(i)).start();
}
countDownLatch.await(); // 等待计数归零,再继续向下执行
System.out.println("close door...");
}
}
8.2. CyclicBarrier
加法计数器
package com.xiaofan;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
public static void main(String[] args) {
/**
* 集齐7颗龙珠召唤神龙
*/
CyclicBarrier cyclicBarrier = new CyclicBarrier(7, () -> {
System.out.println("召唤神龙成功!");
});
for (int i = 1; i <= 7; i++) {
int temp = i;
// Lambda 操作不到i
new Thread(()->{
System.out.println(Thread.currentThread().getName() + "收集" + temp + " 个龙珠");
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
} catch (Exception e) {
}
System.out.println(Thread.currentThread().getName() + "continue...");
}).start();
}
}
}
8.3. Semaphore
信号量
抢车位 6辆车同时抢三个车位
package com.xiaofan.util;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
public class SemaphoreDemo {
public static void main(String[] args) {
// 线程数量, 停车位, 限流!
Semaphore semaphore = new Semaphore(3);
for (int i = 1; i <= 6; i++) {
new Thread(()->{
// acquire() 得到信号量
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + "抢到车位");
TimeUnit.SECONDS.sleep(2);
System.out.println(Thread.currentThread().getName() + "离开车位");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release(); // 释放信号量
}
}, String.valueOf(i)).start();
}
}
}
原理:
semaphore.acquire();
获得信号量,假如满了,等待被释放为止
semaphore.release();
释放信号量, 唤醒等待的线程
作用:多个共享资源互斥的使用!
9. 读写锁
package com.xiaofan.rw;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
/**
* 独占锁(写锁) 一次只能被一个线程占有
* 共享锁(读锁) 多个线程可以同时占有
* ReadWriteLock
* 读-读 可以共存!
* 读-写 不能共存!
* 写-写 不能共存!
*/
public class ReadWriteLockDemo {
public static void main(String[] args) {
// MyCache myCache = new MyCache();
MyCacheLock myCacheLock = new MyCacheLock();
for (int i = 1; i <= 5; i++) {
int temp = i;
new Thread(()->{
myCacheLock.put(String.valueOf(temp), String.valueOf(temp));
}, String.valueOf(i)).start();
}
for (int i = 1; i <= 5; i++) {
int temp = i;
new Thread(()->{
myCacheLock.get(String.valueOf(temp));
}, String.valueOf(i)).start();
}
}
}
/**
* 自定义缓存
*/
class MyCache {
private volatile Map<String, Object> map = new HashMap<>();
// 存, 写
public void put(String key, Object value) {
System.out.println(Thread.currentThread().getName() +" 写入 " + key);
map.put(key, value);
System.out.println(Thread.currentThread().getName() +" 写入完毕!");
}
// 取,读
public void get(String key) {
System.out.println(Thread.currentThread().getName() + " 读取 " + key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName() + " 读取完毕!");
}
}
/**
* 加锁的自定义缓存
*/
class MyCacheLock {
private volatile Map<String, Object> map = new HashMap<>();
// 读写锁,更加细粒度的控制
private ReadWriteLock readWriteLock = new ReentrantReadWriteLock();
// 存, 写入的时候
public void put(String key, Object value) {
readWriteLock.writeLock().lock();
try {
System.out.println(Thread.currentThread().getName() +" 写入 " + key);
map.put(key, value);
System.out.println(Thread.currentThread().getName() +" 写入完毕!");
} catch (Exception e) {
e.printStackTrace();
} finally {
readWriteLock.writeLock().unlock();
}
}
// 取,读
public void get(String key) {
readWriteLock.readLock().lock();
try {
System.out.println(Thread.currentThread().getName() + " 读取 " + key);
Object o = map.get(key);
System.out.println(Thread.currentThread().getName() + " 读取完毕!");
} catch (Exception e) {
e.printStackTrace();
} finally {
readWriteLock.readLock().unlock();
}
}
}
10. 阻塞队列
什么情况下我们会使用阻塞队列: 多线程并发处理,线程池!
四组API
-
抛出异常
-
不会抛出异常
-
阻塞等待
-
超时等待
package com.xiaofan.bq;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.TimeUnit;
public class Test {
public static void main(String[] args) throws InterruptedException {
test4();
}
/**
* 抛出异常
*/
public static void test1() {
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(arrayBlockingQueue.add(1));
System.out.println(arrayBlockingQueue.add(2));
System.out.println(arrayBlockingQueue.add(3));
// java.lang.IllegalStateException: Queue full
// System.out.println(arrayBlockingQueue.add(4));
// 判断队首元素
System.out.println(arrayBlockingQueue.element());
System.out.println(arrayBlockingQueue.remove());
System.out.println(arrayBlockingQueue.remove());
System.out.println(arrayBlockingQueue.remove());
// java.util.NoSuchElementException
// System.out.println(arrayBlockingQueue.remove());
}
/**
* 不抛出异常
*/
public static void test2() {
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(arrayBlockingQueue.offer(1));
System.out.println(arrayBlockingQueue.offer(2));
System.out.println(arrayBlockingQueue.offer(3));
System.out.println(arrayBlockingQueue.offer(4));
// 判断队首元素
System.out.println(arrayBlockingQueue.peek());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
// java.util.NoSuchElementException
// System.out.println(arrayBlockingQueue.remove());
}
/**
* 等待阻塞(一直阻塞)
*/
public static void test3() throws InterruptedException {
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
arrayBlockingQueue.put(1);
arrayBlockingQueue.put(2);
arrayBlockingQueue.put(3);
// 等待阻塞,一直阻塞,直到放进去位置
// arrayBlockingQueue.put(4);
System.out.println(arrayBlockingQueue.take());
System.out.println(arrayBlockingQueue.take());
System.out.println(arrayBlockingQueue.take());
// 等待阻塞,一直阻塞,直到取到元素为止
System.out.println(arrayBlockingQueue.take());
}
/**
* 等待阻塞(超时等待)
*/
public static void test4() throws InterruptedException {
ArrayBlockingQueue arrayBlockingQueue = new ArrayBlockingQueue<>(3);
System.out.println(arrayBlockingQueue.offer(1));
System.out.println(arrayBlockingQueue.offer(2));
System.out.println(arrayBlockingQueue.offer(3));
// 超过3秒钟后则产生结果
System.out.println(arrayBlockingQueue.offer(4, 3, TimeUnit.SECONDS));
// 判断队首元素
System.out.println(arrayBlockingQueue.peek());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll());
System.out.println(arrayBlockingQueue.poll(3, TimeUnit.SECONDS));
}
}
10.1. SynchronousQueue 同步队列
没有容量,放进去一个元素,必须等待取出来之后,才能再往里面放一个元素!
put、take
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;
/**
* 同步队列
* 和其他的BlockingQueue不一样, SynchronousQueue不存储元素
* put进去了一个元素,必须等待take出来后才能再取!
*/
public class SynchronousQueueDemo {
public static void main(String[] args) {
SynchronousQueue<String>synchronousQueue = new SynchronousQueue();
new Thread(()->{
try {
System.out.println(Thread.currentThread().getName() + " put 1");
synchronousQueue.put("1");
System.out.println(Thread.currentThread().getName() + " put 2");
synchronousQueue.put("2");
System.out.println(Thread.currentThread().getName() + " put 3");
synchronousQueue.put("3");
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
new Thread(()->{
try {
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + " " + synchronousQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + " " + synchronousQueue.take());
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + " " + synchronousQueue.take());
} catch (InterruptedException e) {
e.printStackTrace();
}
}).start();
}
}
11. 线程池
- 线程池3大方法
package com.xiaofan.pool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
// Executors 工具类、 3大方法
public class Demo01 {
public static void main(String[] args) {
// ExecutorService threadPool = Executors.newSingleThreadExecutor();
// ExecutorService threadPool= Executors.newCachedThreadPool();
ExecutorService threadPool = Executors.newFixedThreadPool(5);
try {
for (int i = 0; i < 10; i++) {
// 使用了线程池之后,使用线程池来创建线程
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName() + " ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
// 线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
- 7大参数
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
// 本质调用了ThreadPool
public ThreadPoolExecutor(int corePoolSize, // 核心线程池大小
int maximumPoolSize, // 最大线程的数量
long keepAliveTime, // 超时了没有人调用就会释放
TimeUnit unit, // 超时单位
BlockingQueue<Runnable> workQueue, // 阻塞队列
ThreadFactory threadFactory, // 线程工厂,创建线程的,一般不用动
RejectedExecutionHandler handler) { // 拒绝策略
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?
null :
AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
- 手动创建一个线程池
package com.xiaofan.pool;
import java.util.concurrent.*;
/**
* 自定义线程池
* 没有线程可用的时候(阻塞队列也没有了,就启动拒绝策略)
* 1.new ThreadPoolExecutor.AbortPolicy() 线程池不够用了,还有任务,就抛出异常
* 2.new ThreadPoolExecutor.CallerRunsPolicy() 哪来的哪去
* 3.new ThreadPoolExecutor.DiscardPolicy() 队列满了,丢掉任务,不会抛出异常
* 4.new ThreadPoolExecutor.DiscardOldestPolicy() 队列满了,尝试和最早的竞争,也不会抛出异常
*/
public class Demo02 {
public static void main(String[] args) {
ExecutorService threadPool = new ThreadPoolExecutor(
2,
5,
3,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()
);
try {
for (int i = 0; i < 10; i++) {
// 使用了线程池之后,使用线程池来创建线程
// threadPool.execute(()->{
// System.out.println(Thread.currentThread().getName() + " ok");
// });
threadPool.execute(new MyTask(i, String.valueOf(i)));
}
} catch (Exception e) {
e.printStackTrace();
} finally {
// 线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
class MyTask implements Runnable {
private int taskId;
private String taskName;
public MyTask(int taskId, String taskName){
this.taskId = taskId;
this.taskName = taskName;
}
public int getTaskId() {
return taskId;
}
public void setTaskId(int taskId) {
this.taskId = taskId;
}
public String getTaskName() {
return taskName;
}
public void setTaskName(String taskName) {
this.taskName = taskName;
}
@Override
public void run() {
System.out.println("ID: " + this.taskId + " NAME: "+Thread.currentThread().getName() + " ok");
}
public String toString(){
return Integer.toString(this.taskId);
}
}
- 4种拒绝策略
- 线程池的大小如何去设置!
package com.xiaofan.pool;
import java.util.concurrent.*;
/**
* 线程池的最大数设置
* 1. CPU密集型,几核,就是几,可以保持CPU的效率最高!
* 2. IO密集型,大于判断程序中十分耗IO的线程数,一半2倍即可
*/
public class Demo03 {
public static void main(String[] args) {
ExecutorService threadPool = new ThreadPoolExecutor(2,
Runtime.getRuntime().availableProcessors(),
3,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy()
);
try {
for (int i = 0; i < 10; i++) {
// 使用了线程池之后,使用线程池来创建线程
threadPool.execute(()->{
System.out.println(Thread.currentThread().getName() + " ok");
});
}
} catch (Exception e) {
e.printStackTrace();
} finally {
// 线程池用完,程序结束,关闭线程池
threadPool.shutdown();
}
}
}
12. 四大函数式接口
新时代的攻城狮:lambda表达式
,连式编程
,函数式接口
,Stream流式计算
函数式接口:只有一个方法的接口
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lFXQiOyP-1600684307015)(C:\Users\59404\AppData\Roaming\Typora\typora-user-images\image-20200920151449508.png)]
- 函数式接口 Function
package com.xiaofan.function;
import java.util.function.Function;
/**
* Function 函数型接口,有一个输入参数,一个输出参数
* 函数型接口,可以用 lambda表达式简化
*/
public class Demo01 {
public static void main(String[] args) {
Function<String, String> function = new Function<String, String>() {
@Override
public String apply(String str) {
return str;
}
};
System.out.println(function.apply("fanfan"));
// lambda表达式
function = str -> str;
System.out.println(function.apply("xiaofan"));
}
}
- 断定型接口 Predicate
package com.xiaofan.function;
import java.util.function.Predicate;
/**
* 断定型接口:一个输入参数,返回值只能是boolean
*/
public class Demo02 {
public static void main(String[] args) {
Predicate<String> predicate = new Predicate<String>() {
@Override
public boolean test(String s) {
return s.isEmpty();
}
};
System.out.println(predicate.test(""));
// lambda表达式
predicate = str -> str.isEmpty();
System.out.println(predicate.test("fanfan"));
}
}
- 供给型接口 Supplier
package com.xiaofan.function;
import java.util.function.Supplier;
/**
* 供给型接口:没有参数,只有返回值
*/
public class Demo03 {
public static void main(String[] args) {
Supplier<String> supplier = new Supplier<String>() {
@Override
public String get() {
return "1024";
}
};
System.out.println(supplier.get());
//lambda
supplier = ()-> "1024";
System.out.println(supplier.get());
}
}
- 消费型接口 Consumer
package com.xiaofan.function;
import java.util.function.Consumer;
/**
* 消费型接口,没有返回值,只有参数
*/
public class Demo04 {
public static void main(String[] args) {
Consumer<String> consumer = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
consumer.accept("xiaofan");
//lambda表达式
consumer = s -> System.out.println(s);
consumer.accept("xiaofan");
}
}
13. Stream流式计算
package com.xiaofan.stream;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
/**
* 题目要求: 一分钟内完成此题:只能用一行代码实现!
* 现有5个用户!筛选:
* 1. ID必须是偶数
* 2. 年龄必须大于23岁
* 3. 用户名转为大写字母
* 4. 用户名字母倒着排序
* 5. 只输出一个用户!
*/
public class Test {
public static void main(String[] args) {
User u1 = new User(1, "a", 21);
User u2 = new User(2, "b", 22);
User u3 = new User(3, "c", 23);
User u4 = new User(4, "d", 24);
User u5 = new User(6, "e", 25);
// 集合就是存储
List<User> users = Arrays.asList(u1, u2, u3, u4, u5);
users.stream()
.filter(u -> u.getId() % 2 == 0)
.filter(u -> u.getAge() > 23)
.map(u -> u.getName().toUpperCase())
.sorted(Comparator.reverseOrder())
.limit(1)
.forEach(System.out::println);
}
}
14. 分支合并ForkJoin
package com.xiaofan.forkjoin;
import java.util.concurrent.RecursiveTask;
/**
* 求和计算的任务!
* 3000 6000(ForkJoin) 9000(Stream并行流)
* 如何使用forkjoin
* 1. ForkjoinPool 通过它来执行
* 2. 计算任务forkjoinPool.execute(ForkJoinTask task)
* 3. 计算类要继承ForkJoinTask
*/
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start;
private Long end;
private Long temp = 10000L;
public ForkJoinDemo(Long start, Long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if ((end - start) < temp) {
Long sum = 0L;
for (Long i = start; i <= end; i++) {
sum += i;
}
return sum;
} else {
// forkjoin递归
Long middle = (start + end) /2;
// 拆分任务,把任务亚茹线程队列
ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
task1.fork();
// 拆分任务,把任务亚茹线程队列
ForkJoinDemo task2 = new ForkJoinDemo(middle+1, end);
task2.fork();
return task1.join() + task2.join();
}
}
}
- 测试
package com.xiaofan.forkjoin;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
test1(); // 7119
test2(); // 5038
test3(); // 180
}
public static void test1() {
Long sum = 0L;
long start = System.currentTimeMillis();
for (Long i = 0L; i <= 10_1000_0000; i++) {
sum += i;
}
long end = System.currentTimeMillis();
System.out.println("sum= " + sum + " 时间:" + (end -start));
}
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinDemo forkJoinDemo = new ForkJoinDemo(0L, 10_0000_0000L);
ForkJoinTask<Long> submit = forkJoinPool.submit(forkJoinDemo);// 提交任务
Long sum = submit.get();
long end = System.currentTimeMillis();
System.out.println("sum= " + sum + " 时间:" + (end - start));
}
public static void test3() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
long end = System.currentTimeMillis();
System.out.println("sum= " + sum + " 时间:" + (end -start));
}
}
15. 异步回调
- 没有返回值的runAsync
package com.xiaofan.feature;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
/**
* 异步调用 CompletableFuture
* 异步执行
* 成功回调
* 失败回调
*/
public class Demo01 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 没有返回值的runAsync 异步回调
Future<Void> future = CompletableFuture.runAsync(() -> {
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " runAsync => Void");
});
System.out.println("111");
future.get(); // 获取阻塞执行结果
}
}
- 有返回值的 supplyAsync
package com.xiaofan.feature;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
/**
* 异步调用 CompletableFuture
* 异步执行
* 成功回调
* 失败回调
*/
public class Demo02 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 有返回值的SupplyAsync 异步回调
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
System.out.println(Thread.currentThread().getName() + " supplyAsync => String");
// int i = 1/0;
return "1024";
});
System.out.println(future.whenComplete((t, u) -> {
System.out.println("t=> " + t); // t 正常的返回结果
System.out.println("u=> " + u); // u 错误信息
}).exceptionally((e) -> {
System.out.println(e.getMessage());
return "500";
}).get());
}
}
16. JMM
-
什么是JMM
JMM: java内存模型,不存在的东西,概念,约定!
-
关于JMM的一些同步约定:
- 线程解锁前,必须把共享变量立刻刷回主存
- 线程加锁前,必须读取主存中的最新值到工作内存中!
- 加锁和解锁必须是同一把锁
-
线程 工作内存、主内存
- 8种操作
17. volatile
-
谈谈你对volatile的理解
volatile是Java虚拟机提供轻量级的同步机制
- 保证可见性
- 不保证原子性
- 禁止指令重排
-
保证可见性
package com.xiaofan.tvolitale;
import java.util.concurrent.TimeUnit;
public class JMMDemo {
// 不加volatile程序就会死循环
// 加了volatile可以保证可见性
private volatile static int num = 0;
public static void main(String[] args) {
new Thread(()->{ // 线程1 对主内存的变化不知道
while (num == 0) {
}
}).start();
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
num = 1;
System.out.println(num);
}
}
- 不保证原子性
javap -c *.class
原子性:不可分割
线程A在执行任务的时候,不能被打扰,也不能被分割,要么同时成功,要么同时失败
package com.xiaofan.tvolitale;
public class VDemo {
// volatile 不保证原子性
private static int num = 0;
public static void add() {
num ++;
}
public static void main(String[] args) {
for (int i = 1; i <= 20; i++) {
new Thread(()->{
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
while(Thread.activeCount() > 2) { // main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
如果不加Lock 和synchronized,怎么保证原子性
- 使用原子类
package com.xiaofan.tvolitale;
import java.util.concurrent.atomic.AtomicInteger;
public class VDemo {
// volatile 不保证原子性
// 原子类的Integer
private static AtomicInteger num = new AtomicInteger();
public static void add() {
// num ++; 不是一个原子操作
num.getAndIncrement(); // +1 , CAS
}
public static void main(String[] args) {
for (int i = 1; i <= 20; i++) {
new Thread(()->{
for (int j = 0; j < 1000; j++) {
add();
}
}).start();
}
while(Thread.activeCount() > 2) { // main gc
Thread.yield();
}
System.out.println(Thread.currentThread().getName() + " " + num);
}
}
- 指令重排
volatile指令可以避免指令编排
内存屏障 CPU指令,作用:
- 保证特定的操作的执行顺序
- 可以保证某些变量的内存可见性(volatile)
18. 深入单例模式
- 饿汉式
package com.xiaofan.single;
/**
* 饿汉式单例
*/
public class HungryMan {
// 可能会浪费空间
private byte[] data1 = new byte[1024*1024];
private byte[] data2 = new byte[1024*1024];
private byte[] data3 = new byte[1024*1024];
private byte[] data4 = new byte[1024*1024];
private HungryMan() {}
private final static HungryMan HUNGRY = new HungryMan();
public static HungryMan getInstance() {
return HUNGRY;
}
}
- 懒汉式
双重检测,避免不了反射破坏
package com.xiaofan.single;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
/**
* 懒汉式
*/
public class LazyMan {
private LazyMan() {
System.out.println(Thread.currentThread().getName() + "ok");
synchronized (LazyMan.class) {
if (lazyMan != null) {
throw new RuntimeException("不要视图通过反射破坏单 例!");
}
}
}
// 禁止指令重拍
private volatile static LazyMan lazyMan;
// 双重检测锁模式 懒汉式单例 DCL 懒汉式
public static LazyMan getInstance() {
if (lazyMan == null) {
synchronized (LazyMan.class) {
if (lazyMan == null) {
lazyMan = new LazyMan(); // 不是一个原子性操作
/**
* 1. 分配内存空间
* 2. 执行构造方法,初始化对象
* 3. 把这个对象指向这个空间
*
* 123
* 132 A
* B // 此时lazyMan还没有完成构造
*/
}
}
}
return lazyMan;
}
public static void main(String[] args) throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException, NoSuchFieldException {
// LazyMan lazyMan1 = LazyMan.getInstance();
// 通过反射破坏单例
Constructor<LazyMan> constructor = LazyMan.class.getDeclaredConstructor();
constructor.setAccessible(true);
LazyMan lazyMan1 = constructor.newInstance();
LazyMan lazyMan2 = constructor.newInstance();
System.out.println(lazyMan1);
System.out.println(lazyMan2);
}
}
- 枚举实现单例(枚举本身就是一种类)
- 杜绝了反射破坏,抛出异常
- 序列化之后,仍是同一个对象
package com.xiaofan.single;
import java.io.*;
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;
/**
* 懒汉式
*/
public class LazyManApp {
// 私有化构造方法
private LazyManApp() {}
//定义一个静态枚举类
static enum SingletonEnum{
//创建一个枚举对象,该对象天生为单例
INSTANCE;
private LazyManApp lazyManApp;
//私有化枚举的构造函数
private SingletonEnum(){
lazyManApp = new LazyManApp();
}
public LazyManApp getInstance(){
return lazyManApp;
}
}
//对外暴露一个获取LazyManApp对象的静态方法
public static LazyManApp getInstance(){
return LazyManApp.SingletonEnum.INSTANCE.getInstance();
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InvocationTargetException, NoSuchMethodException, InstantiationException, IllegalAccessException {
test1();
}
// 测试序列化
public static void test3() throws IOException, ClassNotFoundException {
SingletonEnum s = SingletonEnum.INSTANCE;
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("SerEnumSingleton.obj"));
oos.writeObject(s);
oos.flush();
oos.close();
FileInputStream fis = new FileInputStream("SerEnumSingleton.obj");
ObjectInputStream ois = new ObjectInputStream(fis);
SingletonEnum s1 = (SingletonEnum)ois.readObject();
ois.close();
System.out.println(s+"\n"+s1);
System.out.println("枚举序列化前后两个是否同一个:"+(s==s1));
}
// 测试反射
public static void test2() throws NoSuchMethodException, IllegalAccessException, InvocationTargetException, InstantiationException {
Constructor<SingletonEnum> constructor = SingletonEnum.class.getDeclaredConstructor(String.class, int.class);
constructor.setAccessible(true);
SingletonEnum lazyMan1 = constructor.newInstance();
SingletonEnum lazyMan2 = constructor.newInstance();
System.out.println(lazyMan1.getInstance());
System.out.println(lazyMan2.getInstance());
}
// 测试并发
public static void test1() {
for (int i = 0; i < 20; i++) {
new Thread(()->{
System.out.println(Thread.currentThread().getName() + LazyManApp.getInstance());
}).start();
}
}
}
19. 深入理解CAS
package com.xiaofan.cas;
import java.util.concurrent.atomic.AtomicInteger;
public class CasDemo {
public static void main(String[] args) {
AtomicInteger atomicInteger = new AtomicInteger(2020);
// 期望、更新
// public final boolean compareAndSet(int expect, int update)
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
System.out.println(atomicInteger.compareAndSet(2020, 2021));
System.out.println(atomicInteger.get());
}
}
- Unsafe
- ABA问题
20. 原子引用
解决ABA问题,引入原子引用,对应的思想: 乐观锁!
带版本号的原子操作!
package com.xiaofan.cas;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicStampedReference;
public class CasSolveABADemo {
static AtomicStampedReference<Integer> atomicStampedReference = new AtomicStampedReference(1, 1);
public static void main(String[] args) {
// AtomicStampedReference 注意:如果泛型是一个包装类,注意对象的引用问题
// 正常业务操作,这里面比较的都是一个个对象
new Thread(()->{
int stamp = atomicStampedReference.getStamp(); // 获取版本号
System.out.println("a1=> " + stamp);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("a2 => " + atomicStampedReference.compareAndSet(1, 2, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1));
System.out.println("a2 => " + atomicStampedReference.getStamp());
System.out.println("a3 => " + atomicStampedReference.compareAndSet(2, 1, atomicStampedReference.getStamp(), atomicStampedReference.getStamp() + 1));
System.out.println("a3 => " + atomicStampedReference.getStamp());
}, "a").start();
new Thread(()->{
int stamp = atomicStampedReference.getStamp(); // 获取版本号
System.out.println("b1=> " + stamp);
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("b2 => " + atomicStampedReference.compareAndSet(1, 6, stamp, stamp + 1));
System.out.println("b2 => " + atomicStampedReference.getStamp());
}, "b").start();
}
}
21. 可重入锁、公平锁、非公平锁、自旋锁、死锁
- 可重入锁
- 锁套锁 对于Lock而言,加锁和解锁必须配对
- 公平、非公平锁
-
自旋锁
-
死锁