POJ-2104-K-th Number(函数式线段树)

本文介绍了一种高效的数据结构实现方案,用于解决在一个整数数组中快速查找特定区间内的第k小元素的问题。通过离散化、插入操作及查询算法,实现了对数组段内元素的有效管理和检索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 10 9 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

Source

Northeastern Europe 2004, Northern Subregion


思路:离散化,插入,查询。详见代码。


#include <cstdio>
#include <algorithm>
using namespace std;

struct S{
int val,id,pos;
}node[100005];

bool cmpval(struct S a,struct S b)
{
    return a.val<b.val;
}

bool cmpid(struct S a,struct S b)
{
    return a.id<b.id;
}

int T[100005],ls[4000000],rs[4000000],vv[100005],cnum[4000000],nodenum,cnt,n,m;

void insert(int s,int e,int pos,int pre,int &x)
{
    x=++nodenum;

    ls[x]=ls[pre];
    rs[x]=rs[pre];

    cnum[x]=cnum[pre]+1;

    if(s!=e)
    {
        int mid=(s+e)>>1;

        if(pos<=mid) insert(s,mid,pos,ls[pre],ls[x]);
        else insert(mid+1,e,pos,rs[pre],rs[x]);
    }

}

int query(int a,int b,int s,int e,int k)
{
    if(s==e) return vv[s];
    else
    {
        int mid=(s+e)>>1;

        if(cnum[ls[b]]-cnum[ls[a]]>=k) return query(ls[a],ls[b],s,mid,k);//跟第b棵树的左子树和第a棵树的左子树的差比较
        else return query(rs[a],rs[b],mid+1,e,k-cnum[ls[b]]+cnum[ls[a]]);
    }
}

int main()
{
    int i,a,b,k;

    while(~scanf("%d%d",&n,&m))
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&node[i].val);
            node[i].id=i;

            vv[i]=node[i].val;
        }

        sort(vv+1,vv+n+1);
        cnt=unique(vv+1,vv+n+1)-vv-1;//去重

        sort(node+1,node+n+1,cmpval);

        int p=1;

        for(i=1;i<=n;i++)//离散化
        {
            if(node[i].val!=vv[p]) p++;

            node[i].pos=p;
        }

        sort(node+1,node+n+1,cmpid);

        T[0]=ls[0]=rs[0]=cnum[0]=nodenum=0;

        for(i=1;i<=n;i++) insert(1,cnt,node[i].pos,T[i-1],T[i]);

        while(m--)
        {
            scanf("%d%d%d",&a,&b,&k);

            printf("%d\n",query(T[a-1],T[b],1,cnt,k));
        }
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值