poj 1050 解题报告

最大连续子矩阵和算法
本文介绍了一种求解二维矩阵中最大连续子矩阵和的算法。通过将矩阵的每一行视为一个整体并计算其和,进而将原问题转化为一维数组的最大连续子序列和问题。采用动态规划的方法高效地解决了这个问题。

这个题目其实是经典问题最大连续字段和问题的扩展.
首先我们回顾一下经典问题求最大连续字段和问题.
这个问题其实是一个递归问题,可以用多种思想来解决,比如递归,分治,动规.(这里运用动规的思想)
要求a[size]的最大连续字段和,这个问题可以这样思考,截止到数组截止到n(假想最大序列到这个位置)的最大值,这样从1到size一共有size个值,求出这size个值中最大的一个即为这个数组的连续字段最大值了.那麽截止到n的最大值怎么求呢? 可以这么想 
                                                         截止到n的连续序列最大值= 截止到n-1的连续序列最大值+a[n] 如果截止到n-1的连续序列最大值>0 否则
截止到n的连续序列最大值=a[n];

这样一层层就能退出来每一个截止到i的连续序列最大值了. 再从这些值中找到一个最大的,就是该数组的连续序列最大值了.

而这道题的难点不在于这个地方,它在于你去抽象这个大的矩形,

0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
我们可以这么想 把一行抽象成为一个数字,这样该矩形就抽象成为了一列数据,而这一列数据就可以用上面的方法求出连续序列最大值了. 而这恰恰是你抽象出来的那个小矩形的最大值.  仔细想想是把..  举个例子 假如你将0 -2 7 看成一个数字 就是计算出和,这样下面的 9 2 -6 也一样看成一个数字,等等 这样也就是计算出了4个数字,你只用将这4个数字运用上面的方法再求出最大的连续子序列和就行了.

#include <stdlib.h>
#include <stdio.h>
#define N 100


int seqMax(int *p,int size) {
	int sum=0;
	int b=0;
	int i=0;
	for(;i<=size;i++)
	{
		if(b>0) b+=*(p+i);
		else b=*(p+i);
		if(b>sum) sum=b;
	}
	return sum;
}
int main()
{
	int n;
	int i,j,row,k;
	int arr[N][N];
	int sum[N];
	int tmp=0;
	int max=0;

	memset(arr,0,sizeof(arr));
	memset(sum,0,sizeof(sum));	
	scanf("%d",&n);
	printf("please input %d numbers\n",n*n);
	
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++) 
			scanf("%d",&arr[i][j]);
		
		for(i=1;i<=n-1;i++)
			for(j=i+1;j<=n;j++)  //确定横向范围
			{
				for(row=1;row<=n;row++) //纵向
				{	
					tmp=0;
					for(k=i;k<=j;k++)
					{
						tmp=tmp+arr[row][k];	

					}	
					sum[row]=tmp;
				}//计算出该横向范围的所有列
					
				tmp=seqMax(sum,n);
				if(tmp>max) max=tmp;
			}


	printf("the max value of the rectangle is :%d",max);
}


Delphi 12.3 作为一款面向 Windows 平台的集成开发环境,由 Embarcadero Technologies 负责其持续演进。该环境以 Object Pascal 语言为核心,并依托 Visual Component Library(VCL)框架,广泛应用于各类桌面软件、数据库系统及企业级解决方案的开发。在此生态中,Excel4Delphi 作为一个重要的社区开源项目,致力于搭建 Delphi 与 Microsoft Excel 之间的高效桥梁,使开发者能够在自研程序中直接调用 Excel 的文档处理、工作表管理、单元格操作及宏执行等功能。 该项目以库文件与组件包的形式提供,开发者将其集成至 Delphi 工程后,即可通过封装良好的接口实现对 Excel 的编程控制。具体功能涵盖创建与编辑工作簿、格式化单元格、批量导入导出数据,乃至执行内置公式与宏指令等高级操作。这一机制显著降低了在财务分析、报表自动生成、数据整理等场景中实现 Excel 功能集成的技术门槛,使开发者无需深入掌握 COM 编程或 Excel 底层 API 即可完成复杂任务。 使用 Excel4Delphi 需具备基础的 Delphi 编程知识,并对 Excel 对象模型有一定理解。实践中需注意不同 Excel 版本间的兼容性,并严格遵循项目文档进行环境配置与依赖部署。此外,操作过程中应遵循文件访问的最佳实践,例如确保目标文件未被独占锁定,并实施完整的异常处理机制,以防数据损毁或程序意外中断。 该项目的持续维护依赖于 Delphi 开发者社区的集体贡献,通过定期更新以适配新版开发环境与 Office 套件,并修复已发现的问题。对于需要深度融合 Excel 功能的 Delphi 应用而言,Excel4Delphi 提供了经过充分测试的可靠代码基础,使开发团队能更专注于业务逻辑与用户体验的优化,从而提升整体开发效率与软件质量。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值