读arm体系有感

本文介绍了ARM架构的特点及其高效编程方法。重点讲述了如何利用CTypes进行有效类型转换、选择合适的变量类型来节省内存、以及编写高效的循环结构等关键实践。通过遵循这些建议,可以显著提高基于ARM平台的应用程序性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The ARM
architecture is a RISC load/store architecture. In other words you must load values from
memory into registers before acting on them. There are no arithmetic or logical instructions

that manipulate values in memory directly.


 loads that act on 8- or 16-bit values extend the value to 32 bits before writing
to an ARM register. Unsigned values are zero-extended, and signed values sign-extended.
This means that the cast of a loaded value to an int type does not cost extra instructions.
Similarly, a store of an 8- or 16-bit value selects the lowest 8 or 16 bits of the register. The
cast of an int to smaller type does not cost extra instructions on a store.


The Efficient Use of C Types
■ For local variables held in registers, don’t use a char or short type unless 8-bit or
16-bitmodular arithmetic is necessary. Use the signed or unsigned int types instead.
Unsigned types are faster when you use divisions.
■ For array entries and global variables held in main memory, use the type with the
smallest size possible to hold the required data. This saves memory footprint. The
ARMv4 architecture is efficient at loading and storing all data widths provided you
traverse arrays by incrementing the array pointer. Avoid using offsets from the base of
the array with short type arrays, as LDRH does not support this.
■ Use explicit casts when reading array entries or global variables into local variables, or
writing local variables out to array entries. The castsmake it clear that for fast operation
you are taking a narrow width type stored in memory and expanding it to a wider type
in the registers. Switch on implicit narrowing cast warnings in the compiler to detect
implicit casts.
■ Avoid implicit or explicit narrowing casts in expressions because they usually cost extra
cycles. Casts on loads or stores are usually free because the load or store instruction
performs the cast for you.
■ Avoid char and short types for function arguments or return values. Instead use the
int type even if the range of the parameter is smaller. This prevents the compiler
performing unnecessary casts.


The compiler is not being inefficient. It must be careful about the case when
i = -0x80000000 because the two sections of code generate different answers in this case.
For the first piece of code the SUBS instruction compares i with 1 and then decrements i.
Since -0x80000000 < 1, the loop terminates. For the second piece of code, we decrement
i and then compare with 0. Modulo arithmetic means that i now has the value
+0x7fffffff, which is greater than zero. Thus the loop continues for many iterations.
Of course, in practice, i rarely takes the value -0x80000000. The compiler can’t usu-
ally determine this, especially if the loop starts with a variable number of iterations (see
Section 5.3.2).
Therefore you should use the termination condition i!=0 for signed or unsigned loop
counters. It saves one instruction over the condition i>0 for signed i.


Writing Loops Efficiently
■ Use loops that count down to zero. Then the compiler does not need to allocate
a register to hold the termination value, and the comparison with zero is free.
■ Use unsigned loop counters by default and the continuation condition i!=0 rather than
i>0. This will ensure that the loop overhead is only two instructions.
■ Use do-while loops rather than for loops when you know the loop will iterate at least
once. This saves the compiler checking to see if the loop count is zero.
■ Unroll important loops to reduce the loop overhead. Do not overunroll. If the loop
overhead is small as a proportion of the total, then unrolling will increase code size and
hurt the performance of the cache.
■ Try to arrange that the number of elements in arrays aremultiples of four or eight. You
can then unroll loops easily by two, four, or eight times without worrying about the
leftover array elements.

基于C2000 DSP的电力电子、电机驱动和数字滤波器的仿真模型构建及其C代码实现方法。首先,在MATLAB/Simulink环境中创建电力电子系统的仿真模型,如三相逆变器,重点讨论了PWM生成模块中死区时间的设置及其对输出波形的影响。接着,深入探讨了C2000 DSP内部各关键模块(如ADC、DAC、PWM定时器)的具体配置步骤,特别是EPWM模块采用上下计数模式以确保对称波形的生成。此外,还讲解了数字滤波器的设计流程,从MATLAB中的参数设定到最终转换为适用于嵌入式系统的高效C代码。文中强调了硬件在环(HIL)和支持快速原型设计(RCP)的重要性,并分享了一些实际项目中常见的陷阱及解决方案,如PCB布局不当导致的ADC采样异常等问题。最后,针对中断服务程序(ISR)提出了优化建议,避免因ISR执行时间过长而引起的系统不稳定现象。 适合人群:从事电力电子、电机控制系统开发的技术人员,尤其是那些希望深入了解C2000 DSP应用细节的研发工程师。 使用场景及目标:①掌握利用MATLAB/Simulink进行电力电子设备仿真的技巧;②学会正确配置C2000 DSP的各项外设资源;③能够独立完成从理论设计到实际产品落地全过程中的各个环节,包括但不限于数字滤波器设计、PWM信号生成、ADC采样同步等。 其他说明:文中提供了大量实用的代码片段和技术提示,帮助者更好地理解和实践相关知识点。同时,也提到了一些常见错误案例,有助于开发者规避潜在风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值