1、定义
- 树的带权路径长度(WPL)
将树的每一个节点附加一个权值,树中所有叶子节点的带权路径长度之和成为该树的带权路径长度。其计算公式如下:
- 哈夫曼树
带权路径长度WPL最小的二叉树成为哈夫曼树(或最优二叉树)。
- 哈夫曼编码
规定哈夫曼树种左分支为0,右分支为1,则从根节点到每个叶子节点所经过的分支对应的0和1组成的序列便为该节点对应字符的编码,这样的编码成为哈夫曼编码。
详细定义可查看博客:https://blog.youkuaiyun.com/l494926429/article/details/52494926
2、应用
哈夫曼树主要用于哈夫曼编码,可以起到压缩作用。
3、实现
(1)哈夫曼树的类型定义
typedef struct HTNode
{
char data;
double weight;
int parent, left, right;
}HTNode;
(2)哈夫曼树的构造算法
//returns the huffman tree
HTNode* CreateHTNode(char* src, double* weight, int n)
{
int h_n = 2 * n - 1;
//init the huffman tree
HTNode* h = new HTNode[h_n];
for (int i = 0; i < n; i++)
{
h[i].data = src[i];
h[i].weight = weight[i];
h[i].parent = h[i].left = h[i].right = -1;
}
for (int i = n; i < h_n; i++)
h[i].parent = -1;
//create the huffman tree
int min1_index, min2_index; //the index of the least two weight
for(int i = n ; i < h_n; i++)
{
min1_index = min2_index = -1;
for (int j = 0; j < i; j++)
{
if (h[j].parent == -1)
{
if (min1_index == -1 || h[j].weight < h[min1_index].weight)
{
min2_index = min1_index;
min1_index = j;
}
else if (min2_index == -1 || h[j].weight < h[min2_index].weight)
{
min2_index = j;
}
}
}
h[i].weight = h[min1_index].weight + h[min2_index].weight;
h[i].left = min1_index;
h[i].right = min2_index;
h[min1_index].parent = h[min2_index].parent = i;
}
return h;
}
(3)哈夫曼编码
//returns the huffman code of the huffman tree
map<char, string>* CreateHCode(HTNode* h, int n)
{
map<char, string>* m = new map<char, string>;
for (int i = 0; i < n; i++)
{
string t = "";
int k = i;
while (h[k].parent != -1)
{
if (h[h[k].parent].left == k)
t += '0';
else
t += '1';
k = h[k].parent;
}
reverse(t.begin(), t.end());
(*m)[h[i].data] = t;
}
return m;
}
4、测试
假设用于通信的电文仅由 8 个字母组成,字母在电文中出现的频率分别为 0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10。试为这 8 个字母设计哈夫曼编码。
#include <iostream>
#include <string>
#include <map>
using namespace std;
typedef struct HTNode
{
char data;
double weight;
int parent, left, right;
}HTNode;
//returns the huffman tree
HTNode* CreateHTNode(char* src, double* weight, int n)
{
int h_n = 2 * n - 1;
//init the huffman tree
HTNode* h = new HTNode[h_n];
for (int i = 0; i < n; i++)
{
h[i].data = src[i];
h[i].weight = weight[i];
h[i].parent = h[i].left = h[i].right = -1;
}
for (int i = n; i < h_n; i++)
h[i].parent = -1;
//create the huffman tree
int min1_index, min2_index; //the index of the least two weight
for(int i = n ; i < h_n; i++)
{
min1_index = min2_index = -1;
for (int j = 0; j < i; j++)
{
if (h[j].parent == -1)
{
if (min1_index == -1 || h[j].weight < h[min1_index].weight)
{
min2_index = min1_index;
min1_index = j;
}
else if (min2_index == -1 || h[j].weight < h[min2_index].weight)
{
min2_index = j;
}
}
}
h[i].weight = h[min1_index].weight + h[min2_index].weight;
h[i].left = min1_index;
h[i].right = min2_index;
h[min1_index].parent = h[min2_index].parent = i;
}
return h;
}
//returns the huffman code of the huffman tree
map<char, string>* CreateHCode(HTNode* h, int n)
{
map<char, string>* m = new map<char, string>;
for (int i = 0; i < n; i++)
{
string t = "";
int k = i;
while (h[k].parent != -1)
{
if (h[h[k].parent].left == k)
t += '0';
else
t += '1';
k = h[k].parent;
}
reverse(t.begin(), t.end());
(*m)[h[i].data] = t;
}
return m;
}
int main()
{
const char data[] = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h' };
const double weight[] = {0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10};
const int n = 8;
HTNode* h = CreateHTNode(const_cast<char*>(data), const_cast<double*>(weight), n);
map<char, string>* m = CreateHCode(h, n);
for (map<char, string>::iterator iter = m->begin(); iter != m->end(); iter++)
{
cout << iter->first << " : " << iter->second << endl;
}
delete []h, m;
system("pause");
return 0;
}