Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
1:注意特殊条件, 2:数组排序;3:采用递归,每个数字自能取一次;4:递归终止情况;5:递归进行情况
<p class="p1"> <span class="s1">vector</span><<span class="s1">vector</span><<span class="s2">int</span>> > combinationSum2(<span class="s1">vector</span><<span class="s2">int</span>> &num, <span class="s2">int</span> target)</p><p class="p1"> {</p><p class="p1"> <span class="s1">vector</span><<span class="s1">vector</span><<span class="s2">int</span>> > result;</p><p class="p1"> <span class="s2">if</span>(num.<span class="s3">size</span>() == <span class="s4">0</span> )</p><p class="p1"> {</p><p class="p1"> <span class="s2">return</span> result;</p><p class="p1"> }</p><p class="p2"> </p><p class="p1"> <span class="s3">sort</span>(num.<span class="s3">begin</span>(), num.<span class="s3">end</span>());</p><p class="p1"> <span class="s1">vector</span><<span class="s2">int</span>> temp;</p><p class="p2"> </p><p class="p1"> <span class="s5">combinationSum2Core</span>(num, target, <span class="s4">0</span>, temp, result);</p><p class="p2"> </p><p class="p1"> <span class="s2">return</span> result;</p><p class="p1"> }</p><p class="p2"> </p><p class="p1"> <span class="s2">void</span> combinationSum2Core(<span class="s1">vector</span><<span class="s2">int</span>> &num, <span class="s2">int</span> target, <span class="s2">int</span> index, <span class="s1">vector</span><<span class="s2">int</span>> &temp, <span class="s1">vector</span><<span class="s1">vector</span><<span class="s2">int</span>> >& result)</p><p class="p1"> {</p><p class="p1"> <span class="s2">if</span>(target == <span class="s4">0</span>)</p><p class="p1"> {</p><p class="p1"> result.<span class="s3">push_back</span>(temp);</p><p class="p1"> <span class="s2">return</span>;</p><p class="p1"> }</p><p class="p1"> <span class="s2">if</span>(index == num.<span class="s3">size</span>() || num[<span class="s3">index</span>] > target)</p><p class="p1"> {</p><p class="p1"> <span class="s2">return</span>;</p><p class="p1"> }</p><p class="p2"> </p><p class="p1"> temp.<span class="s3">push_back</span>(num[<span class="s3">index</span>]);</p><p class="p1"> <span class="s5">combinationSum2Core</span>(num, target - num[<span class="s3">index</span>], index + <span class="s4">1</span>, temp, result);</p><p class="p1"> temp.<span class="s3">pop_back</span>();</p><p class="p2"> </p><p class="p1"> <span class="s2">for</span>(<span class="s2">int</span> i = index + <span class="s4">1</span>; i < (<span class="s2">int</span>)num.<span class="s3">size</span>(); i++)</p><p class="p1"> {</p><p class="p1"> <span class="s2">if</span>(num[<span class="s3">i</span>] != num[<span class="s3">index</span>])</p><p class="p1"> {</p><p class="p1"> <span class="s5">combinationSum2Core</span>(num, target, i, temp, result);</p><p class="p1"> <span class="s2">break</span>;</p><p class="p1"> }</p><p class="p1"> }</p><p class="p2"> </p><p class="p1"> }</p>