Mapping MDX To SQL Statements

本文详细解析了使用MDX(Multidimensional Expressions)进行复杂的数据分析查询过程,包括COLUMNS和ROWS轴表达式的构建方法,以及如何通过这些步骤获取单元格的值。通过具体的SQL-like语句展示了如何从销售立方体中提取数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SELECT
   CROSSJOIN ({Access, Word}, {Kansas, Buffalo, Topeka, USA, Canada})
      ON COLUMNS,
   {[1994].Qtr1.MEMBERS, [1994].Qtr2, [1994].Qtr3, [1994].Qtr4.MEMBERS} ON ROWS
FROM SalesCube
WHERE (Sales)


COLUMNS Axis Expression

The COLUMNS axis expression consists of the CROSSJOIN function applied on two literal sets. Applying the mappings described in Literal Sets generates two virtual tables. These virtual tables are used as input to the SQL statements described in CROSSJOIN Function.

The result of these operations yields the following two tables (denoted as Table C and Table CPrime):

Name1

Name2

Rank

Products.[All].Office.Access

Geography.[All].USA.Kansas

1

Products.[All].Office.Access

Geography.[All].USA.NewYork.Buffalo

2

Products.[All].Office.Access

Geography.[All].USA.Kansas.Topeka

3

Products.[All].Office.Access

Geography.[All].USA

4

Products.[All].Office.Access

Geography.[All].Canada

5

Products.[All].Office.Word

Geography.[All].USA.Kansas

6

Products.[All].Office.Word

Geography.[All].USA.NewYork.Buffalo

7

Products.[All].Office.Word

Geography.[All].USA.Kansas.Topeka

8

Products.[All].Office.Word

Geography.[All].USA

9

Products.[All].Office.Word

Geography.[All].Canada

10

Product

ProdLine

Product.[All]

City

State

Country

Geography.[All]

Rank

Products.[All].Office.Access

Products.[All].Office

Product.[All]

ALL()

Geography.USA.Kansas

Geography.USA

Geography.[All]

1

Products.[All].Office.Access

Products.[All].Office

Product.[All]

Geography.USA.NewYork.Buffalo

Geography.USA.NewYork

Geography.USA

Geography.[All]

2

Products.[All].Office.Access

Products.[All].Office

Product.[All]

Geography.USA.Kansas.Topeka

Geography.USA.Kansas

Geography.USA

Geography.[All]

3

Products.[All].Office.Access

Products.[All].Office

Product.[All]

ALL()

ALL()

Geography.USA

Geography.[All]

4

Products.[All].Office.Access

Products.[All].Office

Product.[All]

ALL()

ALL()

Geography.Canada

Geography.[All]

5

Products.[All].Office.Word

Products.[All].Office

Product.[All]

ALL()

Geography.USA.Kansas

Geography.USA

Geography.[All]

6

Products.[All].Office.Word

Products.[All].Office

Product.[All]

Geography.USA.NewYork.Buffalo

Geography.USA.NewYork

Geography.USA

Geography.[All]

7

Products.[All].Office.Word

Products.[All].Office

Product.[All]

Geography.USA.Kansas.Topeka

Geography.USA.Kansas

Geography.USA

Geography.[All]

8

Products.[All].Office.Word

Products.[All].Office

Product.[All]

ALL()

ALL()

Geography.USA

Geography.[All]

9

Products.[All].Office.Word

Products.[All].Office

Product.[All]

ALL()

ALL()

Geography.Canada

Geography.[All]

10

Cprime is obtained from C by using the following steps:

  1. Find out the number of nested dimensions in the axis expression:

    SELECT COUNT DISTINCT COMPONENT(Name, -1) FROM C
    

    In the current example, there are 2 nested dimensions.

  2. Find the names of each dimension:

    SELECT DISTINCT COMPONENT(Name, -1) FROM C
    

    In the current example, this is Products, Geography.

  3. For each dimension, find out the deepest member in the axis expression:

    SELECT MAX(LEVEL(Name)) FROM C GROUP BY COMPONENT(Name, -1)
    

    In the current example, the deepest member is 3 for Geography and 2 for Products.

  4. Create two tables: C1 and C2. C1 has all members in C from Products, and C2 has all members in C from Geography.

    CREATE LOCAL TEMPORARY VIEW C1(Name, Rank) AS
    
       SELECT Name, NewRank AS Rank
    FROM
          (SELECT Name1 FROM C WHERE COMPONENT(Name, -1) = "Products"
          RANK ROWS AS NewRank RANKORDER BY Rank)
    
    CREATE LOCAL TEMPORARY VIEW C2(Name, Rank) AS
    
       SELECT Name, NewRank AS Rank
    FROM
          (SELECT Name2 FROM C WHERE COMPONENT(Name, -1) = "Geography"
           RANK ROWS AS NewRank RANKORDER BY Rank)
    
  5. Next, create Cprime:

    SELECT Product AS COMPONENT(C1.Name, 2),
       ProdLine AS COMPONENT(C1.Name, 1),
       Product.[All] AS COMPONENT(C1.Name, 0),
       City AS COMPONENT(C2.Name, 3),
       State AS COMPONENT(C2.Name, 2),
       Country AS COMPONENT(C2.Name, 1),
       Geography.[All] AS COMPONENT(C2.Name, 0)
       NewRank AS Rank
    FROM
       (C1 CROSS JOIN C2) RANK ROWS AS NewRank
    RANKORDER BY C1.Rank, C2.Rank
    

ROWS Axis Expression

You can use the method described in the section COLUMNS Axis Expression to obtain the following tables R and Rprime:

Name

Rank

Time.[All].1994.Jan

1

Time.[All].1994.Feb

2

Time.[All].1994.Mar

3

Time.[All].1994.Qtr2

4

Time.[All].1994.Qtr3

5

Time.[All].1994.Oct

6

Time.[All].1994.Nov

7

Time.[All].1994.Dec

8

Month

Quarter

Year

Time.[All]

Rank

Time.[All].1994.Jan

Time.[All].1994.Qtr1

1994

Time.[All]

1

Time.[All].1994.Feb

Time.[All].1994.Qtr1

1994

Time.[All]

2

Time.[All].1994.Mar

Time.[All].1994.Qtr1

1994

Time.[All]

3

ALL()

Time.[All].1994.Qtr2

1994

Time.[All]

4

ALL()

Time.[All].1994.Qtr3

1994

Time.[All]

5

Time.[All].1994.Oct

Time.[All].1994.Qtr4

1994

Time.[All]

6

Time.[All].1994.Nov

Time.[All].1994.Qtr4

1994

Time.[All]

7

Time.[All].1994.Dec

Time.[All].1994.Qtr4

1994

Time.[All]

8

Getting Cell Values

This topic has not yet been rated - Rate this topic

The query for getting the cell values is as follows:

SELECT Value, NewRank AS Rank
FROM
   (SELECT Value
   FROM
      (Fact AS F JOIN Cprime AS C ON
         (   C.[Product.[All]] = F.[Product.[All]]
         AND C.ProdLine = F.ProdLine
         AND C.Product = F.Product
         AND C.[Geography.[All]] = F.[Geography.[All]]
         AND C.Country = F.Country
         AND C.State = F.State
         AND C.City = F.City
         AND F.Zipcode = ALL()
         )
      JOIN Rprime AS R ON
         (   R.[Time.[All]] = F.[Time.[All]]
         AND R.Year)  = F.Year
         AND R.Quarter = F.Quarter
         AND R.Month = F.Month
         AND F.Day = ALL()
         )
      )
   WHERE F.Measures = "Sales")
   RANK ROWS AS newrank RANKORDER BY Rank1, Rank2
ORDER BY Rank

来源:MSDN

内容概要:本文深入解析了扣子COZE AI编程及其详细应用代码案例,旨在帮助读者理解新一代低门槛智能体开发范式。文章从五个维度展开:关键概念、核心技巧、典型应用场景、详细代码案例分析以及未来发展趋势。首先介绍了扣子COZE的核心概念,如Bot、Workflow、Plugin、Memory和Knowledge。接着分享了意图识别、函数调用链、动态Prompt、渐进式发布及监控可观测等核心技巧。然后列举了企业内部智能客服、电商导购助手、教育领域AI助教和金融行业合规质检等应用场景。最后,通过构建“会议纪要智能助手”的详细代码案例,展示了从需求描述、技术方案、Workflow节点拆解到调试与上线的全过程,并展望了多智能体协作、本地私有部署、Agent2Agent协议、边缘计算插件和实时RAG等未来发展方向。; 适合人群:对AI编程感兴趣的开发者,尤其是希望快速落地AI产品的技术人员。; 使用场景及目标:①学习如何使用扣子COZE构建生产级智能体;②掌握智能体实例、自动化流程、扩展能力和知识库的使用方法;③通过实际案例理解如何实现会议纪要智能助手的功能,包括触发器设置、下载节点、LLM节点Prompt设计、Code节点处理和邮件节点配置。; 阅读建议:本文不仅提供了理论知识,还包含了详细的代码案例,建议读者结合实际业务需求进行实践,逐步掌握扣子COZE的各项功能,并关注其未来的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值