Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
回溯算法,通过一个Map保存之前的数目,避免大量的重复计算,程序如下所示:
class Solution {
private Map<Integer, Integer> map = new HashMap<>();
public int combinationSum4(int[] nums, int target) {
return backTracing(nums, 0, target);
}
public int backTracing(int[] nums, int begin, int target){
int count = 0;
if (begin >= nums.length||target < 0){
return 0;
}
if (target == 0){
return 1;
}
if (map.containsKey(target)){
return map.get(target);
}
for (int i = 0; i < nums.length; ++ i){
count += backTracing(nums, i, target - nums[i]);
}
map.put(target, count);
return count;
}
}