377. Combination Sum IV

本文探讨了给定正整数数组求和至目标值的所有可能组合数量问题,并提供了一个使用回溯算法的Java实现方案。文章还讨论了允许负数的情况及如何限制问题以容纳负数。

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

回溯算法,通过一个Map保存之前的数目,避免大量的重复计算,程序如下所示:

class Solution {
    
    private Map<Integer, Integer> map = new HashMap<>();
    
    public int combinationSum4(int[] nums, int target) {
        return backTracing(nums, 0, target);
    }
    
    public int backTracing(int[] nums, int begin, int target){
        int count = 0;
        if (begin >= nums.length||target < 0){
            return 0;
        }
        if (target == 0){
            return 1;
        }
        if (map.containsKey(target)){
            return map.get(target);
        }
        for (int i = 0; i < nums.length; ++ i){
            count += backTracing(nums, i, target - nums[i]);
        }  
        map.put(target, count);
        return count;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值