D - Lomsat gelral

You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour.

Let’s call colour c dominating in the subtree of vertex v if there are no other colours that appear in the subtree of vertex v more times than colour c. So it’s possible that two or more colours will be dominating in the subtree of some vertex.

The subtree of vertex v is the vertex v and all other vertices that contains vertex v in each path to the root.

For each vertex v find the sum of all dominating colours in the subtree of vertex v.

Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of vertices in the tree.

The second line contains n integers ci (1 ≤ ci ≤ n), ci — the colour of the i-th vertex.

Each of the next n - 1 lines contains two integers xj, yj (1 ≤ xj, yj ≤ n) — the edge of the tree. The first vertex is the root of the tree.

Output
Print n integers — the sums of dominating colours for each vertex.

Examples
Input
4
1 2 3 4
1 2
2 3
2 4
Output
10 9 3 4
Input
15
1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
1 2
1 3
1 4
1 14
1 15
2 5
2 6
2 7
3 8
3 9
3 10
4 11
4 12
4 13
Output
6 5 4 3 2 3 3 1 1 3 2 2 1 2 3
给你一颗树,1是根节点,每个结点的颜色是一个数字,询问每个结点子树上结点颜色的众数和。
在每个结点上开一个map记录颜色,并且两个数组分别记录众数和还有众数出现的次数,启发式合并时不断更新。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e5+5;
map<int,int> m[N];
map<int,int>::iterator it;
vector<int> edge[N];
ll ans[N];
ll sum[N];
int num[N];
int rt[N];

int merge(int x,int y)
{
	if(m[x].size()<m[y].size())
	swap(x,y);
	for(it=m[y].begin();it!=m[y].end();it++)
	{
		m[x][it->first]+=it->second;
		if(num[x]==m[x][it->first])
		sum[x]+=1ll*(it->first);
		if(num[x]<m[x][it->first])
		sum[x]=1ll*(it->first),num[x]=m[x][it->first];
	}
	return x;
}

void dfs(int x,int fa)
{
	for(int i=0;i<edge[x].size();i++)
	{
		if(edge[x][i]==fa)
		continue;
		dfs(edge[x][i],x);
	}
	
	for(int i=0;i<edge[x].size();i++)
	{
		if(edge[x][i]==fa)
		continue;
		rt[x]=merge(rt[x],rt[edge[x][i]]);
		ans[x]=sum[rt[x]];
	}
}

int n,c,x,y;
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&c);
		rt[i]=i;
		m[i][c]++;
		ans[i]=1ll*c;
		sum[i]=1ll*c;
		num[i]=1;
	}
	for(int i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		edge[x].push_back(y);
		edge[y].push_back(x);
	}
	dfs(1,0);
	for(int i=1;i<n;i++)
	printf("%lld ",ans[i]);
	printf("%lld\n",ans[n]);
}
<think>嗯,用户现在在学习算法竞赛,想要了解启发式合并,并且希望由浅入深地讲解,还要用C++的例子来说明。那我得先理清楚启发式合并的基本概念,然后逐步深入,最后给出代码示例。 首先,启发式合并是什么?可能用户之前学过并查集,或者普通的合并方法,但遇到某些情况下效率不高的问题。启发式合并应该是一种优化合并操作的方法,可能通过选择合并的顺序或方式,减少时间复杂度。比如在并查集中的按秩合并,可能就是一种启发式合并的应用。不过用户可能指的是更一般的数据结构合并时的优化策略。 那启发式合并的核心思想应该是每次合并两个集合时,总是将较小的集合合并到较大的集合中,这样可以减少总的操作次数。比如,如果每次合并时都把小集合的元素移动到大集合里,那么每个元素被移动的次数不会超过logN次,因为每次移动后所在的集合大小至少翻倍。这样总的时间复杂度就能控制在O(N logN)级别。 接下来需要解释为什么这种方法有效。比如,假设有两个集合A和B,大小分别为|A|和|B|,且|A|<=|B|。那么将A合并到B中,这样A中的每个元素所在的集合大小至少是原来的两倍(因为B的大小比A大)。因此,每个元素最多被合并logN次,总操作次数就是O(N logN)。 接下来,可能需要举一个具体的例子,比如合并链表或者树结构的时候使用启发式合并。或者是在处理并查集的时候,按大小合并的情况。用户可能需要具体的应用场景,比如并查集的优化,或者在处理某些数据结构(比如平衡树、链表)时的合并操作。 然后,需要用C++来举例说明。比如,可以用并查集的例子,或者用其他数据结构,比如集合的合并。例如,维护多个集合,每个集合用某种结构存储,合并的时候总是将小的合并到大的里面,这样可以减少时间。 比如,可以举一个并查集的例子。并查集的按秩合并就是启发式合并的一种。在并查集的实现中,每个集合有一个父节点,还有一个秩(rank)或者大小。合并的时候,总是将秩较小的根指向秩较大的根。这样能保证树的高度较低,提高查找效率。这时候可以给出具体的代码示例,比如并查集的实现,包含路径压缩和按秩合并。 或者,举一个更通用的例子,比如合并两个链表,或者合并两个平衡二叉搜索树的时候,如何选择合并顺序以减少时间复杂度。例如,合并两个集合的时候,总是遍历较小的集合,将其元素逐个插入到较大的集合中,这样总的时间复杂度较低。 比如,用C++中的std::set来举例。假设有多个set,每次合并两个set的时候,总是将较小的set中的元素插入到较大的set中。这样可以保证每个元素被插入的次数不超过logN次,因为每次插入后所在的集合大小至少翻倍。这样总的时间复杂度是O(N logN logM),其中M是元素的大小?或者可能更优? 例如,代码可能如下: void merge(set<int> &a, set<int> &b) { if (a.size() > b.size()) { swap(a, b); } for (auto x : a) { b.insert(x); } a.clear(); } 这样每次合并的时候,总是将较小的集合合并到较大的里面。这样每个元素被插入的次数是logN次,每次插入的时间复杂度是O(logM),所以总的时间复杂度是O(N logN logM)。不过这可能适用于元素可排序的情况,比如使用平衡树结构的集合。 另一个例子是并查集的实现,其中按秩合并是启发式合并的一种应用。例如: class DSU { vector<int> parent; vector<int> size; public: DSU(int n) { parent.resize(n); size.resize(n, 1); for (int i=0; i<n; ++i) parent[i] = i; } int find(int x) { if (parent[x] != x) parent[x] = find(parent[x]); return parent[x]; } void unite(int x, int y) { x = find(x); y = find(y); if (x == y) return; if (size[x] < size[y]) swap(x, y); parent[y] = x; size[x] += size[y]; } }; 这里,unite函数中总是将较小的集合合并到较大的集合里。这里的大小指的是集合的元素个数。这样可以保证树的高度较低,从而find操作的时间复杂度几乎是常数。 但用户可能想了解的不仅仅是并查集中的情况,而是更广泛的启发式合并应用。比如在处理某些数据结构时,比如链表、数组或者树结构的合并,如何利用启发式合并来优化。 比如,在解决某些问题时,比如动态连接问题,或者离线查询处理,可能需要多次合并不同的数据结构,这时候使用启发式合并可以显著减少时间。 另一个例子是,在树上处理子树问题的时候,比如每个节点维护一个颜色的集合,当处理子树时,将子节点的集合合并到父节点。这时候如果采用启发式合并,每次将较小的子树集合合并到较大的,可以降低总的时间复杂度。 例如,解决树上每个节点的颜色数量问题。每个节点有一个颜色集合,初始时只有自己的颜色。然后从叶子节点向上合并,每个父节点收集所有子节点的颜色集合。这时候,如果每次合并时将较小的集合合并到较大的集合,就能有效减少总操作次数。 这时候可以用C++中的unordered_set来举例: void dfs(int node, int parent, vector<unordered_set<int>> &colors) { for (auto child : children[node]) { if (child != parent) { dfs(child, node, colors); // 合并子节点的colors到当前节点 if (colors[node].size() < colors[child].size()) { swap(colors[node], colors[child]); // 保证node的集合较大 } for (int color : colors[child]) { colors[node].insert(color); } colors[child].clear(); // 可选,释放内存 } } } 这样,每个节点的合并操作都是将较小的集合合并到较大的,从而减少总的插入次数。每个颜色被插入的次数最多是logN次,所以总时间复杂度是O(N logN)。 总结一下,启发式合并的关键点在于每次合并时,总是将较小的结构合并到较大的结构中,这样每个元素被处理的次数减少,从而降低总的时间复杂度。应用场景包括并查集、树上的子树问题、集合合并等。代码示例可以根据不同的应用场景来展示,比如并查集、颜色集合的合并等。 现在需要考虑用户的学习阶段。用户可能在算法竞赛中遇到需要高效合并的问题,比如某些题目需要处理大量合并操作,而普通的暴力合并会导致超时。这时候启发式合并就能派上用场。例如,Codeforces或ACM竞赛中的某些题目,可能需要处理子树信息合并,这时候启发式合并可以优化时间复杂度。 可能用户的问题点在于理解为什么这样合并能优化时间,或者如何在实际问题中应用。因此,在讲解时,需要强调时间复杂度分析,以及具体例子中的操作步骤。 可能还需要比较暴力合并和启发式合并的时间复杂度差异。例如,如果每次合并都是简单地将一个集合的所有元素插入另一个,那么最坏情况下,每次合并都是O(n)时间,总的时间复杂度可能是O(n²)。而使用启发式合并后,总的时间复杂度降低到O(n logn)。 最后,C++的例子需要具体且易于理解。可能用户对STL比较熟悉,所以使用std::set或unordered_set的例子会更直观。或者使用并查集的例子,因为并查集是算法竞赛中的常见结构。 综上所述,我的回答结构应该是: 1. 定义启发式合并:将较小的集合合并到较大的集合,减少操作次数。 2. 解释原理:每个元素被移动的次数最多logN次,总复杂度O(N logN)。 3. 应用场景:并查集按秩合并、子树信息合并、集合合并等。 4. C++示例: a. 并查集的实现(按大小合并)。 b. 树上颜色统计问题的启发式合并。 5. 分析时间复杂度和优势。</think>好的!我将由浅入深为你讲解启发式合并(Heuristic Merge),并用 C++ 举例说明其实现。 --- ### **一、基础概念** **启发式合并** 是一种优化合并操作的策略,核心思想是:**每次合并两个集合时,总是将较小的集合合并到较大的集合中**。这样能减少重复操作次数,从而降低整体时间复杂度。 #### **为什么需要它?** 假设直接合并两个大小为 `n` 和 `m` 的集合(`n < m`),若将大的合并到小的,后续操作可能需要频繁处理更大的集合。而将小的合并到大的,后续操作会更高效。 --- ### **二、时间复杂度分析** - **普通合并**:最坏情况每次合并都需要 `O(n)` 时间,合并 `n` 次的总时间为 `O(n²)`。 - **启发式合并**:每个元素最多被合并 `O(log n)` 次(因为每次合并后集合大小至少翻倍),总时间优化为 `O(n log n)`。 --- ### **三、应用场景** 1. **并查集(按秩合并)** 2. **树上的子树信息合并**(如统计子树颜色) 3. **集合合并问题**(如动态维护多个集合) --- ### **四、C++ 代码示例** #### **1. 并查集的启发式合并(按大小合并)** ```cpp class DSU { vector<int> parent; vector<int> size; public: DSU(int n) { parent.resize(n); size.resize(n, 1); for (int i = 0; i < n; i++) parent[i] = i; } int find(int x) { if (parent[x] != x) parent[x] = find(parent[x]); // 路径压缩 return parent[x]; } void unite(int x, int y) { x = find(x), y = find(y); if (x == y) return; // 启发式合并:小集合合并到大集合 if (size[x] < size[y]) swap(x, y); parent[y] = x; size[x] += size[y]; } }; ``` #### **2. 树上统计子树颜色(启发式合并应用)** 假设树节点有颜色,求每个节点的子树中颜色种类数: ```cpp #include <vector> #include <unordered_set> using namespace std; void dfs(int u, int parent, vector<vector<int>>& tree, vector<unordered_set<int>>& subtreeColors, vector<int>& color) { subtreeColors[u].insert(color[u]); // 当前节点的颜色 for (int v : tree[u]) { if (v == parent) continue; dfs(v, u, tree, subtreeColors, color); // 启发式合并:将小子树合并到大子树 if (subtreeColors[u].size() < subtreeColors[v].size()) { swap(subtreeColors[u], subtreeColors[v]); } // 合并子树颜色 for (int c : subtreeColors[v]) { subtreeColors[u].insert(c); } subtreeColors[v].clear(); // 可选,释放内存 } // 此时 subtreeColors[u] 包含子树所有颜色 } int main() { int n = 100; // 节点数 vector<vector<int>> tree(n); vector<int> color(n); vector<unordered_set<int>> subtreeColors(n); // 假设 tree 和 color 已初始化 dfs(0, -1, tree, subtreeColors, color); return 0; } ``` --- ### **五、关键点总结** 1. **合并方向**:总是小集合合并到大集合。 2. **复杂度保证**:每个元素最多被合并 `O(log n)` 次。 3. **实现技巧**:使用 `swap` 确保操作对象始终是小集合。 4. **适用问题**:需要频繁合并的场景(如并查集、树上统计)。 --- ### **六、习题推荐** 1. [Codeforces 600E - Lomsat gelral](https://codeforces.com/problemset/problem/600/E)(经典启发式合并应用题) 2. 并查集相关题目(如动态连通性问题) 希望这些内容能帮助你掌握启发式合并!如果有更多问题,欢迎继续提问~ 😊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值