本博文主要包含以下内容:
1、 Spark Streaming Job 生成深度思考
2 、Spark Streaming Job 生成源码解析
一 :Spark Streaming Job 生成深度思考
输入的DStream有很多来源Kafka、Socket、Flume,输出的DStream其实是逻辑级别的Action,是Spark Streaming框架提出的,其底层翻译成为物理级别的Action,是RDD的Action,中间是处理过程是transformations,状态转换也就是业务处理逻辑的过程。
Spark Streaming二种数据来源:
1、基于DStream数据源。
2、基于其他DStream产生的数据源。
3、做大数据例如Hadoop,Spark等,如果不是流处理的话,一般会有定时任务。例如10分钟触发一次,1个小时触发一次,这就是做流处理的感觉,一切不是流处理,或者与流处理无关的数据都将是没有价值的数据,以前做批处理的时候其实也是隐形的在做流处理。
所以就有统一的抽象,所有处理都是流处理的方式,所有的处理都将会被纳入流处理。企业大型开发项目都有j2ee后台支撑来提供各种人操作大数据中心。
4、JobGenerator构造的时候有一个核心的参数是jobScheduler, jobScheduler是整个作业的生成和提交给集群的核心,JobGenerator会基于DStream生成Job。这里面的Job就相当于Java中线程要处理的Runnable里面的业务逻辑封装。Spark的Job就是运行的一个作业。
5、Spark Streaming除了基于定时操作以外参数Job,还可以通过各种聚合操作,或者基于状态的操作。
JobGenerator会基于DStream生成Job.
DStream
输入DStream: 数据可以有不同的输入来源来构建输入的DStream(例如,Kafka,Socket,Flume).
输出DStream: 逻辑级别的action.
Transformation DStream
6、每5秒钟JobGenerator都会产生Job,此时的Job是逻辑级别的,也就是说这个Job,并且说这个Job具体该怎么去做,此时并没有执行。具体执行的话是交给底层的RDD的action去触发,此时的action也是逻辑级别的。底层物理级别的,Spark Streaming他是基于DStream构建的依赖关系导致的Job是逻辑级别的,底层是基于RDD的逻辑级别的。
7、Spark Streaming的触发器是以时间为单位的,storm是以事件为触发器,也就是基于一个又一个record. Spark Streaming基于时间,这个时间是Batch Duractions
8、从逻辑级别翻译成物理级别,最后一个操作肯定是RDD的action,但是并不想一翻译立马就触发job。这个时候怎么办?
action触发作业,这个时候作为Runnable的接口封装,他会定义一个方法,这个方法里面是基于DStream的依赖关系生成的RDD。翻译的时候是将DStream的依赖关系翻译成RDD的依赖关系,由于DStream的依赖关系最后一个是action级别的,翻译成RDD的时候,RDD的最后一个操作也应该是action级别的,如果翻译的时候直接执行的话,就直接生成了Job,就没有所谓的队列,所以会将翻译的事件放到一个函数中或者一个方法中,因此,如果这个函数没有指定的action触发作业是执行不了的。
9、Spark Streaming根据时间不断的去管理我们的生成的作业,所以这个时候我们每个作业又有action级别的操作,这个action操作是对DStream进行逻辑级别的操作,他生成每个Job放到队列的时候,他一定会被翻译为RDD的操作,那基于RDD操作的最后一个一定是action级别的,如果翻译的话直接就是触发action的话整个Spark Streaming的Job就不受管理了。因此我们既要保证他的翻译,又要保证对他的管理,把DStream之间的依赖关系转变为RDD之间的依赖关系,最后一个DStream使得action的操作,翻译成一个RDD之间的action操作,整个翻译后的内容他是一块内容,他这一块内容是放在一个函数体中的,这个函数体,他有函数的定义,这个函数由于他只是定义还没有执行,所以他里面的RDD的action不会执行,不会触发Job,当我们的JobScheduler要调度Job的时候,转过来在线程池中拿出一条线程执行刚才的封装的方法。
二:Spark Streaming Job生成源码解析
下面主要从三个类进行解析:
- JobGenerator类:根据batchDuration及内部默认的时间间隔生成Jobs;
- JobScheduler:根据batchDuration负责Spark Streaming Job的调度;
- ReceiverTracker:负责Driver端元数据的接收和启动executor中的接收数据线程;
1、JobScheduler的start方法被调用的时候,会启动JobGenerator的start方法。
/** Start generation of jobs */
def start(): Unit = synchronized {
//eventLoop是消息循环体,因为不断的生成Job
if (eventLoop != null) return // generator has already been started
// Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock.
// See SPARK-10125
checkpointWriter
//匿名内部类
eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event)
override protected def onError(e: Throwable): Unit = {
jobScheduler.reportError("Error in job generator", e)
}
}
//调用start方法。
eventLoop.start()
if (ssc.isCheckpointPresent) {
restart()
} else {
startFirstTime()
}
}
EvenLoop: 的start方法被调用,首先会调用onstart方法。然后就启动线程。
/**
* An event loop to receive events from the caller and process all events in the event thread. It
* will start an exclusive event thread to process all events.
*
* Note: The event queue will grow indefinitely. So subclasses should make sure `onReceive` can
* handle events in time to avoid the potential OOM.
*/
private[spark] abstract class EventLoop[E](name: String) extends Logging {
private val eventQueue: BlockingQueue[E] = new LinkedBlockingDeque[E]()
private val stopped = new AtomicBoolean(false)