AtomicInteger

博客介绍了Java中的AtomicInteger类,它提供原子操作,可解决++i和i++操作的线程安全问题。通过本地硬件CAS实现原子操作,还列举了其提供的接口。此外,通过代码对比了AtomicInteger与synchronized关键字的性能,显示前者性能更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AtomicInteger,一个提供原子操作的Integer的类。在Java语言中,++i和i++操作并不是线程安全的,在使用的时候,不可避免的会用到synchronized关键字。而AtomicInteger则提供一种线程安全的加减操作接口,通过本地硬件CAS实现原子操作。

来看AtomicInteger提供的接口。

//获取当前的值

public final int get()

//取当前的值,并设置新的值

 public final int getAndSet(int newValue)

//获取当前的值,并自增

 public final int getAndIncrement()

//获取当前的值,并自减

public final int getAndDecrement()

//获取当前的值,并加上预期的值

public final int getAndAdd(int delta)

... ...

通过JNI本地的CAS性能远超synchronized关键字

  1. package zl.study.concurrency;  
  2. import java.util.concurrent.atomic.AtomicInteger;  
  3. public class AtomicIntegerCompareTest {  
  4.     private int value;  
  5.       
  6.     public AtomicIntegerCompareTest(int value){  
  7.         this.value = value;  
  8.     }  
  9.       
  10.     public synchronized int increase(){  
  11.         return value++;  
  12.     }  
  13.       
  14.     public static void main(String args[]){  
  15.         long start = System.currentTimeMillis();  
  16.           
  17.         AtomicIntegerCompareTest test = new AtomicIntegerCompareTest(0);  
  18.         forint i=0;i< 1000000;i++){  
  19.             test.increase();  
  20.         }  
  21.         long end = System.currentTimeMillis();  
  22.         System.out.println("time elapse:"+(end -start));  
  23.           
  24.         long start1 = System.currentTimeMillis();  
  25.           
  26.         AtomicInteger atomic = new AtomicInteger(0);  
  27.           
  28.         forint i=0;i< 1000000;i++){  
  29.             atomic.incrementAndGet();  
  30.         }  
  31.         long end1 = System.currentTimeMillis();  
  32.         System.out.println("time elapse:"+(end1 -start1) );  
  33.           
  34.           
  35.     }  
  36. }  

内容概要:本文详细介绍了如何使用STM32微控制器精确控制步进电机,涵盖了从原理到代码实现的全过程。首先,解释了步进电机的工作原理,包括定子、转子的构造及其通过脉冲信号控制转动的方式。接着,介绍了STM32的基本原理及其通过GPIO端口输出控制信号,配合驱动器芯片放大信号以驱动电机运转的方法。文中还详细描述了硬件搭建步骤,包括所需硬件的选择与连接方法。随后提供了基础控制代码示例,演示了如何通过定义控制引脚、编写延时函数和控制电机转动函数来实现步进电机的基本控制。最后,探讨了进阶优化技术,如定时器中断控制、S形或梯形加减速曲线、微步控制及DMA传输等,以提升电机运行的平稳性和精度。 适合人群:具有嵌入式系统基础知识,特别是对STM32和步进电机有一定了解的研发人员和技术爱好者。 使用场景及目标:①学习步进电机与STM32的工作原理及二者结合的具体实现方法;②掌握硬件连接技巧,确保各组件间正确通信;③理解并实践基础控制代码,实现步进电机的基本控制;④通过进阶优化技术的应用,提高电机控制性能,实现更精细和平稳的运动控制。 阅读建议:本文不仅提供了详细的理论讲解,还附带了完整的代码示例,建议读者在学习过程中动手实践,结合实际硬件进行调试,以便更好地理解和掌握步进电机的控制原理和技术细节。同时,对于进阶优化部分,可根据自身需求选择性学习,逐步提升对复杂控制系统的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值