分布式事务简介

1.分布式事务介绍

分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。简单的说,就是一次大的操作由不同的小操作组成,这些小的操作分布在不同的服务器上,且属于不同的应用,分布式事务需要保证这些小操作要么全部成功,要么全部失败。本质上来说,分布式事务就是为了保证不同数据库的数据一致性。

有关的几个概念:

ACID:

  • 原子性(Atomicity):事务是一个原子操作,由一系列动作组成。事务的原子性确保动作要么全部完成,要么完全不起作用。
  • 一致性(Consistency):一旦事务完成(不管成功还是失败),系统必须确保它所建模的业务处于一致的状态,而不会是部分完成部分失败。在现实中的数据不应该被破坏。
  • 隔离性(Isolation):可能有许多事务会同时处理相同的数据,因此每个事务都应该与其他事务隔离开来,防止数据损坏。
  • 持久性(Durability):一旦事务完成,无论发生什么系统错误,它的结果都不应该受到影响,这样就能从任何系统崩溃中恢复过来。通常情况下,事务的结果被写到持久化存储器中
  • 用户账户和积分明细在同一事物中。幂等表,用户子账户和子账户的明细在同一事物中

CAP:

一个分布式系统不可能同时满足一致性(C:Consistency)、可用性(A:Availability)和分区容错性(P:Partition tolerance)这三个基本需求,最多只能同时满足其中两项。

1、一致性(Consistency

在分布式环境下,一致性是指数据在多个副本之间能否保持一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一直的状态。

对于一个将数据副本分布在不同分布式节点上的系统来说,如果对第一个节点的数据进行了更新操作并且更新成功后,却没有使得第二个节点上的数据得到相应的更新,于是在对第二个节点的数据进行读取操作时,获取的依然是老数据(或称为脏数据),这就是典型的分布式数据不一致的情况。在分布式系统中,如果能够做到针对一个数据项的更新操作执行成功后,所有的用户都可以读取到其最新的值,那么这样的系统就被认为具有强一致性

2、可用性(Availability

可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。这里的重点是"有限时间内"和"返回结果"。

"有限时间内"是指,对于用户的一个操作请求,系统必须能够在指定的时间内返回对应的处理结果,如果超过了这个时间范围,那么系统就被认为是不可用的。另外,"有限的时间内"是指系统设计之初就设计好的运行指标,通常不同系统之间有很大的不同,无论如何,对于用户请求,系统必须存在一个合理的响应时间,否则用户便会对系统感到失望。

"返回结果"是可用性的另一个非常重要的指标,它要求系统在完成对用户请求的处理后,返回一个正常的响应结果。正常的响应结果通常能够明确地反映出队请求的处理结果,即成功或失败,而不是一个让用户感到困惑的返回结果。

3、分区容错性(Partition tolerance

分区容错性约束了一个分布式系统具有如下特性:分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障

网络分区是指在分布式系统中,不同的节点分布在不同的子网络(机房或异地网络)中,由于一些特殊的原因导致这些子网络出现网络不连通的状况,但各个子网络的内部网络是正常的,从而导致整个系统的网络环境被切分成了若干个孤立的区域。需要注意的是,组成一个分布式系统的每个节点的加入与退出都可以看作是一个特殊的网络分区

CA 放弃分区容错性,加强一致性和可用性,其实就是传统的单机数据库的选择
AP 放弃一致性(这里说的一致性是强一致性),追求分区容错性和可用性,这是很多分布式系统设计时的选择,例如很多NoSQL系统就是如此
CP 放弃可用性,追求一致性和分区容错性,基本不会选择,网络问题会直接让整个系统不可用

需要明确的一点是,对于一个分布式系统而言,分区容错性是一个最基本的要求。因为既然是一个分布式系统,那么分布式系统中的组件必然需要被部署到不同的节点,否则也就无所谓分布式系统了,因此必然出现子网络。而对于分布式系统而言,网络问题又是一个必定会出现的异常情况,因此分区容错性也就成为了一个分布式系统必然需要面对和解决的问题。因此系统架构师往往需要把精力花在如何根据业务特点在C(一致性)和A(可用性)之间寻求平衡。

BASE:

BA: Basic Availability 基本业务可用性;
S: Soft state 柔性状态;
E: Eventual consistency 最终一致性;
对复杂的分布式事务进行拆解,对其中的每一步骤都记录其状态,有问题的时候可以根据记录的状态来继续执行任务,达到最终的一致

2.分布式事务产生的原因

1.数据库分库分表、应用微服务化  ==>  要操作的数据库变多了

 

2.请求量巨大:单机无法支撑

 

3.业务复杂:业务多,迭代快,需要协调团队合作

3.分布式事务的应用场景

 

转账

 

下单和减库存

 

同步超时、异步回调超时

 

缓存和数据库不一致

4.分布式事务常用解决方案

协议:

4.1.基于XA协议的两阶段提交(2PC)
原理

XA是由X/Open组织提出的分布式事务的规范。

XA规范主要 定义了(全局)事务管理器(Transaction Manager)和(局部)资源管理器(Resource Manager)之间的接口。

XA接口是双向的系统接口,在事务管理器(Transaction Manager)以及一个或多个资源管理器(Resource Manager)之间形成通信桥梁。

XA之所以需要引入事务管理器是因为,在分布式系统中,从理论上讲(参考Fischer等的论文),两台机器理论上无 法达到一致的状态,需要引入一个单点进行协调。事务管理器控制着全局事务,管理事务生命周期,并协调资源。资源管理器负责控制和管理实际资源(如数据库或 JMS队列)。

XA中大致分为两部分:事务管理器和本地资源管理器。其中本地资源管理器往往由数据库实现,比如Oracle、DB2这些商业数据库都实现了XA接口,而事务管理器作为全局的调度者,负责各个本地资源的提交和回滚。XA实现分布式事务的原理如下:

总的来说,XA协议比较简单,而且一旦商业数据库实现了XA协议,使用分布式事务的成本也比较低。但是,XA也有致命的缺点,那就是性能不理想,特别是在交易下单链路,往往并发量很高,XA无法满足高并发场景。XA目前在商业数据库支持的比较理想,在mysql数据库中支持的不太理想,mysql的XA实现,没有记录prepare阶段日志,主备切换回导致主库与备库数据不一致。许多nosql也没有支持XA,这让XA的应用场景变得非常狭隘。

实践

在Java中,分布式事务主要的规范是JTA/XA, 其中:

JTA是Java的事务管理器规范, 

 XA是工业标准的X/Open CAE规范,可被两阶段提交及回滚的事务资源定义, 

 比如某数据库实现了XA规范,则不管是JTA,还是MSDTC,都可以基于同样的行为对该数据库进行事务处理。 

在JTA/XA中,主要有两个扩展点: 
(1) TransactionManager 
JTA事务管理器接口,实现该接口,即可完成对所有XA资源的事务调度,比如BEA的Tuxedo,JBossJTA等。 
(2) XAResource 
XA资源接口,实现该接口,即可被任意TransactionManager调度,比如:JDBC的XAConnection,JMS的XAMQ等。 


Spring JTA应用JOTM & Atomikos I Application

4.2.使用消息实现最终一致性
可靠消息

所谓的消息事务就是基于消息中间件的两阶段提交,本质上是对消息中间件的一种特殊利用,它是将本地事务和发消息放在了一个分布式事务里,保证要么本地操作成功成功并且对外发消息成功,要么两者都失败。开源的RocketMQ就支持这一特性,具体原理如下:

1、A系统向消息中间件发送一条预备消息
2、消息中间件保存预备消息并返回成功
3、A执行本地事务
4、A发送提交消息给消息中间件

通过以上4步完成了一个消息事务。对于以上的4个步骤,每个步骤都可能产生错误,下面一一分析:

  • 步骤一出错,则整个事务失败,不会执行A的本地操作
  • 步骤二出错,则整个事务失败,不会执行A的本地操作
  • 步骤三出错,这时候需要回滚预备消息,怎么回滚?答案是A系统实现一个消息中间件的回调接口,消息中间件会去不断执行回调接口,检查A事务执行是否执行成功,如果失败则回滚预备消息
  • 步骤四出错,这时候A的本地事务是成功的,那么消息中间件要回滚A吗?答案是不需要,其实通过回调接口,消息中间件能够检查到A执行成功了,这时候其实不需要A发提交消息了,消息中间件可以自己对消息进行提交,从而完成整个消息事务

基于消息中间件的两阶段提交往往用在高并发场景下,将一个分布式事务拆成一个消息事务(A系统的本地操作+发消息)+B系统的本地操作,其中B系统的操作由消息驱动,只要消息事务成功,那么A操作一定成功,消息也一定发出来了,这时候B会收到消息去执行本地操作,如果本地操作失败,消息会重投,直到B操作成功,这样就变相地实现了A与B的分布式事务。原理如下:

ActiveMQ、RabbitMQ、Kafka不支持事务消息,rocketmq支持事务消息

最大努力交付消息

按规律进行通知,不保证数据一定能通知成功,但会提供可查询操作接口进行核对。

4.3  3PC

针对两阶段提交存在的问题,三阶段提交协议通过引入一个“预询盘”阶段,以及超时策略来减少整个集群的阻塞时间,提升系统性能。三阶段提交的三个阶段分别为:can_commitpre_commitdo_commit

can_commit

协调者会去询问各个参与者是否能够正常执行事务,参与者根据自身情况回复一个预估值,相对于真正的执行事务,这个过程是轻量的

pre_commit

 协调者会向所有参与者发送事务执行请求

do_commit

 

协调者将会依据事务执行返回的结果来决定提交或回滚事务

正常流程:


出现异常的流程:

在本阶段如果因为协调者或网络问题,导致参与者迟迟不能收到来自协调者的commit或rollback请求,那么参与者将不会如两阶段提交中那样陷入阻塞,而是等待超时后继续commit。相对于两阶段提交虽然降低了同步阻塞,但仍然无法避免数据的不一致性.

 

4.4. TCC

 

TCC事务的出现正是为了解决应用拆分带来的跨应用业务操作原子性的问题。当然,由于常规的XA事务(2PC,2 Phase Commit, 两阶段提交)

 

性能上不尽如人意,也有通过TCC事务来解决数据库拆分的使用场景(如账务拆分)。

 

 

这三种操作的业务含义如下:
Try:预留业务资源
Confirm:确认执行业务操作
Cancel:取消执行业务操作

 

 

 

 

 

 

 

主业务服务:主业务服务为整个业务活动的发起方。

 

从业务服务:从业务服务负责提供TCC业务操作,是整个业务活动的操作方。从业务服务必须实现Try、Confirm和Cancel三个接口,

 

供主业务服务调用。

 

由于Confirm和Cancel操作可能被重复调用,故要求Confirm和Cancel两个接口必须是幂等的。

 

业务活动管理器:业务活动管理器管理控制整个业务活动,包括记录维护TCC全局事务的事务状态和每个从业务服务的子事务状态,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。

 

可见整个TCC事务对于主业务服务来说是透明的,其中业务活动管理器和从业务服务各自干了一部分工作。

 

TCC事务的优点如下:

 

解决了跨应用业务操作的原子性问题,在诸如组合支付、账务拆分场景非常实用。

 

TCC实际上把数据库层的二阶段提交上提到了应用层来实现,对于数据库来说是一阶段提交,规避了数据库层的2PC性能低下问题。

 

TCC事务的缺点,主要就一个:

 

TCC的Try、Confirm和Cancel操作功能需业务提供,开发成本高。

 

4.5.使用补偿实现最终一致性
TCC编程模式

所谓的TCC编程模式,也是两阶段提交的一个变种。TCC提供了一个编程框架,将整个业务逻辑分为三块:Try、Confirm和Cancel三个操作。

以在线下单为例,Try阶段会去扣库存,Confirm阶段则是去更新订单状态,如果更新订单失败,则进入Cancel阶段,会去恢复库存。

总之,TCC就是通过代码人为实现了两阶段提交,不同的业务场景所写的代码都不一样,复杂度也不一样,因此,这种模式并不能很好地被复用。

4.6.其它方法

本地消息表

将业务和本地消息放在一个事务中,当事务提交成功后,通过实时消息服务将此消息通知后续业务。

查询模式

为了能够实现查询,每个服务操作都需要有唯一的流水号标识,也可使用此次服务操作对应的资源ID来标志,例如:请求流水号、订单号等。

可以查询被调用方是否已经操作成功,来了解被调用服务的处理情况,来决定下一步做什么:补偿未完成的操作还是回滚已经完成的操作。

补偿模式

出现不一致的兜底方案之一。

程序自动补偿,继续完成或者回滚操作;人工处理;

异步确保模式

使用方对响应时间要求并不太高,我们通常把这类操作从主流程中摘除,通过异步的方式进行处理,处理后把结果通过通知系统通知给使用方。

将要执行的异步操作封装后持久入库,然后通过定时捞取未完成的任务进行补偿操作来实现异步确保模式。

定期校对模式

系统间状态不一致通常通过定期校对模式发现问题,并通过补偿模式来修复,最后完成系统间的最终一致性。

可靠消息模式

消息的可靠发送

第一种,发送消息之前,把消息持久到数据库,定时任务定时从数据库捞取一定时间内未发送的消息,将消息发送。

第二种,实现方式与第一种类似,不同的是持久消息的数据库是独立的,并不耦合在业务系统中。发送消息之前,先发送一个预消息给某一个第三方的消息管理器,消息管理器将其持久到数据库,并标记状态为待发送,发送成功后,标记消息为发送成功。定时任务定时从数据库捞取一定时间内未发送的消息,回查业务系统是否要继续发送,根据查询结果来确定消息的状态。

消息处理的幂等性

业务本身是幂等的;

状态流转的方向性;

锁机制;

支持事务的消息中间件

5.参考博客

http://blog.youkuaiyun.com/mine_song/article/details/64118963

http://www.cnblogs.com/baiwa/p/5328722.html

http://www.cnblogs.com/dinglang/p/5679542.html

https://www.zhihu.com/question/31813039/answer/124577907

分布式事务


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值