week7_A TT的魔法猫

本文介绍了一种使用Floyd算法预测游戏胜负的方法,通过构建传递闭包,解决了胜负关系具有传递性的问题。文章详细解释了如何计算无法预先得知胜负的比赛数量,提供了完整的代码实现。

题目描述

众所周知,TT 有一只魔法猫。
这一天,TT 正在专心致志地玩《猫和老鼠》游戏,然而比赛还没开始,聪明的魔法猫便告诉了 TT 比赛的最终结果。TT 非常诧异,不仅诧异于他的小猫咪居然会说话,更诧异于这可爱的小不点为何有如此魔力?
魔法猫告诉 TT,它其实拥有一张游戏胜负表,上面有 N 个人以及 M 个胜负关系,每个胜负关系为 A B,表示 A 能胜过 B,且胜负关系具有传递性。即 A 胜过 B,B 胜过 C,则 A 也能胜过 C。
TT 不相信他的小猫咪什么比赛都能预测,因此他想知道有多少对选手的胜负无法预先得知,你能帮帮他吗?

输入输出

Input

第一行给出数据组数。
每组数据第一行给出 N 和 M(N , M <= 500)。
接下来 M 行,每行给出 A B,表示 A 可以胜过 B。

Output

对于每一组数据,判断有多少场比赛的胜负不能预先得知。注意 (a, b) 与 (b, a) 等价,即每一个二元组只被计算一次。

Sample Input
3
3 3
1 2
1 3
2 3
3 2
1 2
2 3
4 2
1 2
3 4
Sample Output
0
0
4

思路分析

该题中胜负关系具有传递性,因此可以用Floyd算法求出任意两点的胜负关系(传递闭包)。分为以下情况:
dis[a][b]=1表示a比b强
dis[a][b]=0表示a与b的胜负关系不明
dis[a][b]=0且dis[b][a]=0表示a与b的胜负关系无法预先得知
因此,在Floyd算法模板的基础上进行稍微改动即可。

代码

#include<iostream>
using namespace std;

int n,N,M,a,b,ans;//n表示数据组数 
const int maxn=505;
int dis[maxn][maxn];

void floyd()
{
    for(int k=1;k<=N;k++)
    {
        for(int i=1;i<=N;i++)
        {
            if(dis[i][k])
            {//传递闭包
                for(int j=1;j<=N;j++)
		    dis[i][j]=max(dis[i][j],dis[i][k]&dis[k][j]);
      	    }
         }
    }
    for(int i=1;i<N;i++)
    {
        for(int j=i+1;j<=N;j++)
        {
            if(dis[i][j]||dis[j][i]) 
                ans--;//可预知,总场数减一,剩余就是不可预知的
        }
    }
}

int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>N>>M;
        ans=N*(N-1)/2;//总场数
        for(int j=1;j<=N;j++)
        {//初始化dis[]数组
            for(int k=1;k<=N;k++)
                dis[j][k]=0;
        }
         for(int j=0;j<M;j++)
         {
             cin>>a>>b;
             dis[a][b]=1; //标记a比b强 
         }
         floyd();
         cout<<ans<<endl; 
    } 
 return 0;
} 
【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于IEEE33节点的配电网韧性提升方法,重点研究了移动储能系统的预布局与动态调度策略。通过Matlab代码实现,提出了一种结合预配置和动态调度的两阶段优化模型,旨在应对电网故障或极端事件时快速恢复供电能力。文中采用了多种智能优化算法(如PSO、MPSO、TACPSO、SOA、GA等)进行对比分析,验证所提策略的有效性和优越性。研究不仅关注移动储能单元的初始部署位置,还深入探讨其在故障发生后的动态路径规划与电力支援过程,从而全面提升配电网的韧性水平。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事智能电网、能源系统优化等相关领域的工程技术人员。; 使用场景及目标:①用于科研复现,特别是IEEE顶刊或SCI一区论文中关于配电网韧性、应急电源调度的研究;②支撑电力系统在灾害或故障条件下的恢复力优化设计,提升实际电网应对突发事件的能力;③为移动储能系统在智能配电网中的应用提供理论依据和技术支持。; 阅读建议:建议读者结合提供的Matlab代码逐模块分析,重点关注目标函数建模、约束条件设置以及智能算法的实现细节。同时推荐参考文中提及的MPS预配置与动态调度上下两部分,系统掌握完整的技术路线,并可通过替换不同算法或测试系统进一步拓展研究。
先看效果: https://pan.quark.cn/s/3756295eddc9 在C#软件开发过程中,DateTimePicker组件被视为一种常见且关键的构成部分,它为用户提供了图形化的途径来选取日期与时间。 此类控件多应用于需要用户输入日期或时间数据的场景,例如日程管理、订单管理或时间记录等情境。 针对这一主题,我们将细致研究DateTimePicker的操作方法、具备的功能以及相关的C#编程理念。 DateTimePicker控件是由.NET Framework所支持的一种界面组件,适用于在Windows Forms应用程序中部署。 在构建阶段,程序员能够通过调整属性来设定其视觉形态及运作模式,诸如设定日期的显示格式、是否展现时间选项、预设的初始值等。 在执行阶段,用户能够通过点击日历图标的下拉列表来选定日期,或是在文本区域直接键入日期信息,随后按下Tab键或回车键以确认所选定的内容。 在C#语言中,DateTime结构是处理日期与时间数据的核心,而DateTimePicker控件的值则表现为DateTime类型的实例。 用户能够借助`Value`属性来读取或设定用户所选择的日期与时间。 例如,以下代码片段展示了如何为DateTimePicker设定初始的日期值:```csharpDateTimePicker dateTimePicker = new DateTimePicker();dateTimePicker.Value = DateTime.Now;```再者,DateTimePicker控件还内置了事件响应机制,比如`ValueChanged`事件,当用户修改日期或时间时会自动激活。 开发者可以注册该事件以执行特定的功能,例如进行输入验证或更新关联的数据:``...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值