codeforces 475D CGCDSSQ

本文介绍了一个关于整数序列及其查询的问题解决方案,通过使用双 map 数据结构来高效地计算每对区间内所有元素的最大公约数等于特定值的区间数量。

http://www.elijahqi.win/2018/03/02/codeforces-475d-cgcdssq/
Given a sequence of integers a1, …, an and q queries x1, …, xq on it. For each query xi you have to count the number of pairs (l, r) such that 1 ≤ l ≤ r ≤ n and gcd(al, al + 1, …, ar) = xi.

is a greatest common divisor of v1, v2, …, vn, that is equal to a largest positive integer that divides all vi.

Input
The first line of the input contains integer n, (1 ≤ n ≤ 105), denoting the length of the sequence. The next line contains n space separated integers a1, …, an, (1 ≤ ai ≤ 109).

The third line of the input contains integer q, (1 ≤ q ≤ 3 × 105), denoting the number of queries. Then follows q lines, each contain an integer xi, (1 ≤ xi ≤ 109).

Output
For each query print the result in a separate line.

Examples
Input

Copy
3
2 6 3
5
1
2
3
4
6
Output
1
2
2
0
1
Input

Copy
7
10 20 3 15 1000 60 16
10
1
2
3
4
5
6
10
20
60
1000
Output
14
0
2
2
2
0
2
2
1
1
假设现在以a[i]为左端点向右端移动 那么这个区间的所有gcd加起来不超过log(a[i])种 因为我gcd如果要改变至少/2

那么我可以从右向左开始模拟开两个map 表示这种gcd的答案是多少 然后每次向右端移动的时候相当于都存储着我i+1这个位置的所有gcd的答案 然后和我a[i]进行gcd 那么把新获得的值插入新的map中表示我以i为左端点 gcd为x的区间有多少个 注意适时累加到答案map中即可

#include<map>
#include<cstdio>
#include<algorithm>
#define N 110000
#define ll long long
using namespace std;
map<int,ll>::iterator it;
map<int,ll> mm[2],ans;
inline char gc(){
    static char now[1<<16],*S,*T;
    if (T==S){T=(S=now)+fread(now,1,1<<16,stdin);if (T==S) return EOF;}
    return *S++;
}
inline int read(){
    int x=0,f=1;char ch=gc();
    while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
    while(ch<='9'&&ch>='0') x=x*10+ch-'0',ch=gc();
    return x*f;
}
inline int gcd(int x,int y){
    if (!y) return x;else return gcd(y,x%y);
}
int n,m,a[N];
int main(){
    freopen("cf475d.in","r",stdin);
    n=read();
    for (int i=1;i<=n;++i) a[i]=read();int now=1,pre=0;
    for (int i=n;i;--i){
        mm[now].clear();mm[now][a[i]]=1;ans[a[i]]++;
        for (it=mm[pre].begin();it!=mm[pre].end();++it){
            int x=gcd(a[i],(*it).first);mm[now][x]+=(*it).second;ans[x]+=(*it).second;
        }
        now^=1;pre^=1;
    }m=read();
    for (int i=1;i<=m;++i){
        int x=read();printf("%I64d\n",ans[x]);
    }
    return 0;
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值