Coursera深度学习编程作业:Logistic Regression with a Neural Network Mindset

一、Overview of the Problem set

        1. Problem Statement

       给定的数据集中包括:

        - a training set of m_train images labeled as cat (y=1) or non-cat (y=0)
        - a test set of m_test images labeled as cat or non-cat
        - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB). Thus, each image is square (height = num_px) and (width = num_px).

        我们需要构造一个简单的图像识别算法,来判断图片是否为cat

        2. load the data

import numpy as np
import copy
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
from public_tests import *

%matplotlib inline
%load_ext autoreload
%autoreload 2

# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

        从数据集中直接加载的数据用"_orig"表示。train_set_x_orig为(m_train, num_px, num_px, 3) 的形式,其中每一个line表示一个image的信息;而train_set_y为(m_train,1)的形式。注意m_train, num_px和m_test都没有显式给出,需要通过.shape[]获得:

m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]

        3. reshape the image

        为了方便后续的矩阵运算,需要将每个image reshape成(nx, 1)的形式,得到的x用"_flatten"标识

train_set_x_flatten = train_set_x_orig.reshape(m_train, -1).T
test_set_x_flatten = test_set_x_orig.reshape(m_test, -1).T

        4. standardize the dataset

        图像为RBG的表示方法,因此取值范围在[0,255],通过/255即可标准化,得到最终的training set和test set

train_set_x = train_set_x_flatten / 255.
test_set_x = test_set_x_flatten / 255.

 

二、General Architecture of the learning algorithm

        采用logistic regression作为核心算法,将整个过程视为一个小的神经网络。

        对于每个image x^{(i)} ,依次进行以下计算:

z^{(i)}=w^Tx^{(i)}+b

\hat{y}^{(i)}=a^{(i)}=sigmoid(z^{(i)})

L(a^{(i)},y^{(i)})=-y^{(i)}log(a^{(i)})-(1-y^{(i)})log(1-a^{(i)})

        然后计算总的loss fucntion:

J=\frac{1}{m}\sum_{i=1}^{m}L(a^{(i)},y^{(i)})

        我们需要进行以下步骤:

        (1)初始化参数w和b

        (2)选择能够最小化J的参数

        (3)利用得到的参数对test set中的数据进行预测

三、Building the parts of our algorithm

        构造神经网络的核心步骤包括:

        (1)确定模型结构(包括input features的个数等)

        (2)初始化参数

        (3)循环:计算current loss(forward propagation);计算current gradient(backward propagation);利用gradient descent更新参数

        1. helper function--sigmoid

def sigmoid(z):
    """
    Compute the sigmoid of z

    Arguments:
    z -- A scalar or numpy array of any size.

    Return:
    s -- sigmoid(z)
    """

    #(≈ 1 line of code)
    # s = ...
    # YOUR CODE STARTS HERE
    s = 1/(1+np.exp(-z))
    
    # YOUR CODE ENDS HERE
    
    return s

        2. 初始化参数

        参数w需要被初始化成vector,而不能仅仅设定为w=0;而基于Python自带的broadcasting,b不需要设定为vector,但也要注意的是不要直接b = 0,而是初始化成float形式

# GRADED FUNCTION: initialize_with_zeros

def initialize_with_zeros(dim):
    """
    This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
    
    Argument:
    dim -- size of the w vector we want (or number of parameters in this case)
    
    Returns:
    w -- initialized vector of shape (dim, 1)
    b -- initialized scalar (corresponds to the bias) of type float
    """
    
    # (≈ 2 lines of code)
    # w = ...
    # b = ...
    # YOUR CODE STARTS HERE
    w = np.zeros((dim, 1))
    b = 0.
    
    # YOUR CODE ENDS HERE

    return w, b

        3. Forward and Backward propagation

        将propagation的两个方向同时封装在propagate()函数中,即本函数需要计算出cost function和gradient的大小。

# GRADED FUNCTION: propagate

def propagate(w, b, X, Y):
    """
    Implement the cost function and its gradient for the propagation explained above

    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)

    Return:
    cost -- negative log-likelihood cost for logistic regression
    dw -- gradient of the loss with respect to w, thus same shape as w
    db -- gradient of the loss with respect to b, thus same shape as b
    
    Tips:
    - Write your code step by step for the propagation. np.log(), np.dot()
    """
    
    m = X.shape[1]
    
    # FORWARD PROPAGATION (FROM X TO COST)
    #(≈ 2 lines of code)
    # compute activation
    # A = ...
    # compute cost by using np.dot to perform multiplication. 
    # And don't use loops for the sum.
    # cost = ...                                
    # YOUR CODE STARTS HERE
    A = sigmoid(np.dot(w.T,X)+b) # (1, m)
    cost = -(np.sum(Y*np.log(A)+(1-Y)*np.log(1-A)))/m
    
    # YOUR CODE ENDS HERE

    # BACKWARD PROPAGATION (TO FIND GRAD)
    #(≈ 2 lines of code)
    # dw = ...
    # db = ...
    # YOUR CODE STARTS HERE
    dw = np.dot(X,(A-Y).T)/m
    db = np.sum(A-Y)/m
    
    # YOUR CODE ENDS HERE
    cost = np.squeeze(np.array(cost))

    
    grads = {"dw": dw,
             "db": db}
    
    return grads, cost

        4. Optimzation

        通过gradient descent得到能够使得J最小的参数

# GRADED FUNCTION: optimize

def optimize(w, b, X, Y, num_iterations=100, learning_rate=0.009, print_cost=False):
    """
    This function optimizes w and b by running a gradient descent algorithm
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- True to print the loss every 100 steps
    
    Returns:
    params -- dictionary containing the weights w and bias b
    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
    
    Tips:
    You basically need to write down two steps and iterate through them:
        1) Calculate the cost and the gradient for the current parameters. Use propagate().
        2) Update the parameters using gradient descent rule for w and b.
    """
    
    w = copy.deepcopy(w)
    b = copy.deepcopy(b)
    
    costs = []
    
    for i in range(num_iterations):
        # (≈ 1 lines of code)
        # Cost and gradient calculation 
        # grads, cost = ...
        # YOUR CODE STARTS HERE
        grads, cost = propagate(w, b, X, Y)
        
        # YOUR CODE ENDS HERE
        
        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]
        
        # update rule (≈ 2 lines of code)
        # w = ...
        # b = ...
        # YOUR CODE STARTS HERE
        w = w - learning_rate*dw
        b = b- learning_rate*db
        
        # YOUR CODE ENDS HERE
        
        # Record the costs
        if i % 100 == 0:
            costs.append(cost)
        
            # Print the cost every 100 training iterations
            if print_cost:
                print ("Cost after iteration %i: %f" %(i, cost))
    
    params = {"w": w,
              "b": b}
    
    grads = {"dw": dw,
             "db": db}
    
    return params, grads, costs

四、预测predict

        首先计算test set中image对应的Yhat,根据Yhat的值(是否大于0.5)判定是否为cat,即Y是否为1。需要特别注意的是,Yhat为(1, m)形式的矩阵,而不是array,因此取值时为[0,i]的格式,Y_prediction也会同样的道理

# GRADED FUNCTION: predict

def predict(w, b, X):
    '''
    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    
    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''
    
    m = X.shape[1]
    Y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)
    
    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    #(≈ 1 line of code)
    # A = ...
    # YOUR CODE STARTS HERE
    A = sigmoid(np.dot(w.T,X)+b)
    
    # YOUR CODE ENDS HERE
    
    for i in range(A.shape[1]):
        
        # Convert probabilities A[0,i] to actual predictions p[0,i]
        #(≈ 4 lines of code)
        # if A[0, i] > ____ :
        #     Y_prediction[0,i] = 
        # else:
        #     Y_prediction[0,i] = 
        # YOUR CODE STARTS HERE
        if A[0, i] > 0.5:
            Y_prediction[0,i] = 1
        else:
            Y_prediction[0,i] = 0
        
        # YOUR CODE ENDS HERE
    
    return Y_prediction

五、最终模型

# GRADED FUNCTION: model

def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
    """
    Builds the logistic regression model by calling the function you've implemented previously
    
    Arguments:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to True to print the cost every 100 iterations
    
    Returns:
    d -- dictionary containing information about the model.
    """
    # (≈ 1 line of code)   
    # initialize parameters with zeros 
    # w, b = ...
    w, b = initialize_with_zeros(X_train.shape[0])
    
    #(≈ 1 line of code)
    # Gradient descent 
    # params, grads, costs = ...
    params, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
    
    # Retrieve parameters w and b from dictionary "params"
    # w = ...
    # b = ...
    w = params["w"] # 注意w是以string的形式作为dict的key,因此必须加上""
    b = params["b"]
    
    # Predict test/train set examples (≈ 2 lines of code)
    # Y_prediction_test = ...
    # Y_prediction_train = ...
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)
    

    # Print train/test Errors
    if print_cost:
        print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
        print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test, 
         "Y_prediction_train" : Y_prediction_train, 
         "w" : w, 
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}
    
    return d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值