用于自动驾驶车辆视觉定位的地图存储:ORB-SLAM2的一种拓展

文章提出了一种针对自动驾驶车辆的视觉定位方法,通过扩展ORB-SLAM2,实现地图保存和二次运行时的精确定位。在特征丰富的环境中,即使车辆速度高达36 m/s,相对平移误差也能保持在1%以下,相比于全SLAM,该方法具有更高精度和较低计算负荷。

用于自动驾驶车辆视觉定位的地图存储:ORB-SLAM2的一种拓展

Persistent Map Saving for Visual Localization for Autonomous Vehicles : An ORB-SLAM 2 Extension

摘要:

​ 电动汽车和自动驾驶汽车是目前汽车领域的热门研究方向。这两个课题在实现车辆更安全和更环保的方向上是相互促进的。自动驾驶汽车的一个基本组成要素是构建环境地图并在地图上定位自己的能力。在本文中,我们使用一个双目视觉传感器来感知环境并创建地图。因为没有真值数据用作参考且误差会随着时间累积,所以SLAM存在错误定位的可能。因此,我们首先使用我们的ORB-SLAM2的拓展版本在汽车低速行驶的情况下构建并保存具有环境视觉特征的地图。在第二次运行时,我们重新加载地图,然后在之前构建的地图上定位。对构建好的地图进行加载和定位可以提高自动驾驶车辆的连续定位精度。此地图的保存功能是原始的ORB-SLAM 2所缺少的。

​ 我们使用KITTI数据集的场景来评估已建成SLAM地图的定位精度。此外,我们用自己的小型电动模型车记录的数据对构建的地图进行了定位精度测试。测试结果表明,在特征丰富的环境中,对于直线速度平均为36 m/s行驶的车辆而言,定位的相对平移误差可以保持在1%以下。与完全SLAM相比,该定位模式拥有更好的定位精度和更低的计算负荷。我们对ORB-SLAM2拓展的源代码将在以下网址公开:[https://github.com/TUMFTM/orbslam map-saving-extension](https://github.com/TUMFTM/orbslam map-saving-extension)

索引词:SLAM,定位,重定位,自动驾驶,地图,ORB-SLAM2

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值