openCV——角点检测

//角点检测
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include "stdlib.h"

#pragma comment(lib,"cv200.lib")
#pragma comment(lib,"cxcore200.lib")
#pragma comment(lib,"highgui200.lib")
#pragma comment(lib,"cvaux200.lib")

#define max_corners 100

int _tmain(int argc, _TCHAR* argv[])
{
int cornercount= max_corners;
CvPoint2D32f corners[max_corners];
IplImage* srcimg= 0,*grayimg= 0,*corner1= 0,*corner2= 0;
int i;
CvScalar color= CV_RGB(255,0,0);
srcimg= cvLoadImage("lian.bmp",1);
if (!srcimg)
{
return -1;
}
cvNamedWindow("image",1);
grayimg= cvCreateImage(cvGetSize(srcimg),IPL_DEPTH_8U,1);
cvCvtColor(srcimg,grayimg,CV_BGRA2GRAY);

corner1= cvCreateImage(cvGetSize(srcimg),IPL_DEPTH_32F,1);
corner1= cvCreateImage(cvGetSize(srcimg),IPL_DEPTH_32F,1);

cvGoodFeaturesToTrack(grayimg,//输入图像
corner1,//临时浮点32位图像,尺寸与输入一致
corner2,//同上
corners,//输出参数,检测到的角点
&cornercount,//输出参数,检测到的焦点数目
0.05,//最大最小特征值的乘法因子,可接受图像的最小因子
5,//限制因子,角点的最小距离
0,//为0,计算整个图像
3,
0,
0.4
);//在图像中寻找具有大特征值的角点
printf("发现角点数:%d\n",cornercount);
if (cornercount> 0)
{
for (i=0;i<cornercount;i++)
{
cvCircle(srcimg,cvPoint((int)(corners[i].x),(int)(corners[i].y)),
6,color,2,CV_AA,0);
}
}
cvShowImage("image",srcimg);
cvWaitKey(0);
cvReleaseImage(&srcimg);
cvReleaseImage(&grayimg);
cvReleaseImage(&corner1);
cvReleaseImage(&corner2);
return 0;
}


 

函数 GoodFeaturesToTrack
确定图像的强角点
void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, CvArr* temp_image,
CvPoint2D32f* corners, int* corner_count,
double quality_level, double min_distance,
const CvArr* mask=NULL );

参数:
image
输入图像,8-位或浮点32-比特,单通道
eig_image
临时浮点32-位图像,尺寸与输入图像一致
temp_image
另外一个临时图像,格式与尺寸与 eig_image 一致
corners
输出参数,检测到的角点
corner_count
输出参数,检测到的角点数目
quality_level
最大最小特征值的乘法因子。定义可接受图像角点的最小质量因子。
min_distance
限制因子。得到的角点的最小距离。使用 Euclidian 距离
mask
ROI:感兴趣区域。函数在ROI中计算角点,如果 mask 为 NULL,则选择整个图像。 必须为单通道的灰度图,大小与输入图像相同。mask对应的点不为0,表示计算该点。
说明:函数 cvGoodFeaturesToTrack 在图像中寻找具有大特征值的角点。该函数,首先用cvCornerMinEigenVal 计算输入图像的每一个象素点的最小特征值,并将结果存储到变量 eig_image 中。然后进行非最大值抑制(仅保留3x3邻域中的局部最大值)。下一步将最小特征值小于 quality_level•max(eig_image(x,y)) 排除掉。最后,函数确保所有发现的角点之间具有足够的距离,(最强的角点第一个保留,然后检查新的角点与已有角点之间的距离大于 min_distance )。

CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值