LeetCode 123. Best Time to Buy and Sell Stock III

123. Best Time to Buy and Sell Stock III

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
             Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
             Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
             engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

 

方法一:

class Solution 
{
public:
    int maxProfit(vector<int>& prices) 
{
        int n = prices.size();
        if (!n) return 0;
        vector<int> f(n, 0);
        int minv = INT_MAX;
        for (int i = 0; i < n; i ++ )
        {
            if (i) f[i] = f[i - 1];
            if (prices[i] > minv)
                f[i] = max(f[i], prices[i] - minv);
            minv = min(minv, prices[i]);
        }
        int res = f[n - 1];
        int maxv = INT_MIN;
        for (int i = n - 1; i > 0; i -- )
        {
            if (prices[i] < maxv)
                res = max(res, maxv - prices[i] + f[i - 1]);
            maxv = max(maxv, prices[i]);
        }
        return res;
    }
};

 

方法二:

//solve2
//它定义了4个状态:
//Buy1[i]表示前i天做第一笔交易买入股票后剩下的最多的钱
//Sell1[i]表示前i天做第一笔交易卖出股票后剩下的最多的钱
//Buy2[i]表示前i天做第二笔交易买入股票后剩下的最多的钱
//Sell2[i]表示前i天做第二笔交易卖出股票后剩下的最多的钱

//so
//      Sell2[i]=max{Sell2[i-1],Buy2[i-1]+prices[i]}
//      Buy2[i]=max{Buy2[i-1],Sell[i-1]-prices[i]}
//      Sell1[i]=max{Sell[i-1],Buy1[i-1]+prices[i]}
//      Buy1[i]=max{Buy[i-1],-prices[i]}

class Solution
{
public:
    int maxProfit(vector<int>& prices)
    {
        int buy1=numeric_limits<int>::min();
        int buy2=numeric_limits<int>::min();
        int sell1=0;
        int sell2=0;
        for(int i=0;i<prices.size();i++)
        {
            sell2=max(sell2,buy2+prices[i]);
            buy2=max(buy2,sell1-prices[i]);
            sell1=max(sell1,buy1+prices[i]);
            buy1=max(buy1,-prices[i]);
        }
        return sell2;
    }
};

方法三:

这里我们先解释最多可以进行k次交易的算法,然后最多进行两次我们只需要把k取成2即可。我们还是使用“局部最优和全局最优解法”。我们维护两种量,一个是当前到达第i天可以最多进行j次交易,最好的利润是多少(global[i][j]),另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,
global[i][j]=max(local[i][j],global[i-1][j]),
也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。对于局部变量的维护,递推式是
local[i][j]=max(global[i-1][j-1]+max(diff,0),local[i-1][j]+diff),
也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天),第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。
 

class Solution 
{
public:
    int maxProfit(vector<int> &prices) 
    {
        if (prices.empty()) return 0;
        int n = prices.size(), g[n][3] = {0}, l[n][3] = {0};
        for (int i = 1; i < prices.size(); ++i) 
        {
            int diff = prices[i] - prices[i - 1];
            for (int j = 1; j <= 2; ++j) 
            {
                l[i][j] = max(g[i - 1][j - 1] + max(diff, 0), l[i - 1][j] + diff);
                g[i][j] = max(l[i][j], g[i - 1][j]);
            }
        }
        return g[n - 1][2];
    }
};

一维写法:

class Solution 
{
public:
    int maxProfit(vector<int> &prices) 
    {
        if (prices.empty()) return 0;
        int g[3] = {0};
        int l[3] = {0};
        for (int i = 0; i < prices.size() - 1; ++i) 
        {
            int diff = prices[i + 1] - prices[i];
            for (int j = 2; j >= 1; --j) 
            {
                l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff);
                g[j] = max(l[j], g[j]);
            }
        }
        return g[2];
    }
};

 

内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解。
这段代码是解决 **LeetCode 121. Best Time to Buy and Sell Stock** 的经典贪心算法解法。它的目标是找出**只进行一次买卖**的情况下,可以获得的最大利润。 --- ## 🧠 问题描述(LeetCode 121) 给定一个数组 `prices`,其中 `prices[i]` 表示某支股票第 `i` 天的价格。 你只能选择 **某一天买入** 并在 **未来某一天卖出**(不能当天买卖),计算你能获得的 **最大利润**。 --- ## ✅ 示例 ```cpp 输入: prices = [7,1,5,3,6,4] 输出: 5 解释: 第 2 天买入(价格 = 1),第 5 天卖出(价格 = 6),利润为 6 - 1 = 5。 ``` --- ## 🧩 代码详解 ```cpp class Solution { public: int maxProfit(vector<int>& prices) { int ans = 0; // 用于记录最大利润 int min_price = prices[0]; // 用于记录当前遇到的最小买入价格 for (int p : prices) { ans = max(ans, p - min_price); // 计算当前利润,更新最大利润 min_price = min(min_price, p); // 更新最小买入价格 } return ans; } }; ``` --- ## 📌 逐行解释 ### 1. 初始化 ```cpp int ans = 0; int min_price = prices[0]; ``` - `ans` 是最终要返回的最大利润,初始化为 0。 - `min_price` 表示当前为止最小的买入价格,初始化为第一天的价格。 ### 2. 遍历价格数组 ```cpp for (int p : prices) { ``` - 使用范围 for 遍历每一天的价格 `p`。 ### 3. 计算当前利润并更新最大利润 ```cpp ans = max(ans, p - min_price); ``` - 如果当前价格 `p` 减去 `min_price`(之前最低价)大于当前最大利润 `ans`,则更新 `ans`。 ### 4. 更新最小买入价格 ```cpp min_price = min(min_price, p); ``` - 每次遍历都要更新 `min_price`,确保我们始终用最低价买入。 --- ## 🧪 执行过程示例 以 `prices = [7,1,5,3,6,4]` 为例: | i | price | min_price | profit (price - min_price) | ans | |---|-------|-----------|-----------------------------|-----| | 0 | 7 | 7 | 0 | 0 | | 1 | 1 | 1 | 0 | 0 | | 2 | 5 | 1 | 4 | 4 | | 3 | 3 | 1 | 2 | 4 | | 4 | 6 | 1 | 5 | 5 | | 5 | 4 | 1 | 3 | 5 | 最终返回 `ans = 5`。 --- ## ⏱️ 时间与空间复杂度 - **时间复杂度**:O(n),只遍历一次价格数组。 - **空间复杂度**:O(1),只使用了几个变量。 --- ## ✅ 与其他解法对比 | 方法 | 时间复杂度 | 空间复杂度 | 是否推荐 | |------|------------|------------|----------| | 暴力枚举(双重循环) | O(n²) | O(1) | ❌ 不推荐 | | 贪心算法(本解法) | O(n) | O(1) | ✅ 强烈推荐 | | 动态规划 | O(n) | O(n) | ✅ 可选 | --- ## 💡 拓展:动态规划版本(可选) ```cpp int maxProfit(vector<int>& prices) { int n = prices.size(); vector<int> dp(n, 0); // dp[i] 表示第 i 天为止的最大利润 int min_price = prices[0]; for (int i = 1; i < n; ++i) { dp[i] = max(dp[i - 1], prices[i] - min_price); min_price = min(min_price, prices[i]); } return dp[n - 1]; } ``` --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值