LeetCode 123. Best Time to Buy and Sell Stock III

123. Best Time to Buy and Sell Stock III

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
             Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
             Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
             engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

 

方法一:

class Solution 
{
public:
    int maxProfit(vector<int>& prices) 
{
        int n = prices.size();
        if (!n) return 0;
        vector<int> f(n, 0);
        int minv = INT_MAX;
        for (int i = 0; i < n; i ++ )
        {
            if (i) f[i] = f[i - 1];
            if (prices[i] > minv)
                f[i] = max(f[i], prices[i] - minv);
            minv = min(minv, prices[i]);
        }
        int res = f[n - 1];
        int maxv = INT_MIN;
        for (int i = n - 1; i > 0; i -- )
        {
            if (prices[i] < maxv)
                res = max(res, maxv - prices[i] + f[i - 1]);
            maxv = max(maxv, prices[i]);
        }
        return res;
    }
};

 

方法二:

//solve2
//它定义了4个状态:
//Buy1[i]表示前i天做第一笔交易买入股票后剩下的最多的钱
//Sell1[i]表示前i天做第一笔交易卖出股票后剩下的最多的钱
//Buy2[i]表示前i天做第二笔交易买入股票后剩下的最多的钱
//Sell2[i]表示前i天做第二笔交易卖出股票后剩下的最多的钱

//so
//      Sell2[i]=max{Sell2[i-1],Buy2[i-1]+prices[i]}
//      Buy2[i]=max{Buy2[i-1],Sell[i-1]-prices[i]}
//      Sell1[i]=max{Sell[i-1],Buy1[i-1]+prices[i]}
//      Buy1[i]=max{Buy[i-1],-prices[i]}

class Solution
{
public:
    int maxProfit(vector<int>& prices)
    {
        int buy1=numeric_limits<int>::min();
        int buy2=numeric_limits<int>::min();
        int sell1=0;
        int sell2=0;
        for(int i=0;i<prices.size();i++)
        {
            sell2=max(sell2,buy2+prices[i]);
            buy2=max(buy2,sell1-prices[i]);
            sell1=max(sell1,buy1+prices[i]);
            buy1=max(buy1,-prices[i]);
        }
        return sell2;
    }
};

方法三:

这里我们先解释最多可以进行k次交易的算法,然后最多进行两次我们只需要把k取成2即可。我们还是使用“局部最优和全局最优解法”。我们维护两种量,一个是当前到达第i天可以最多进行j次交易,最好的利润是多少(global[i][j]),另一个是当前到达第i天,最多可进行j次交易,并且最后一次交易在当天卖出的最好的利润是多少(local[i][j])。下面我们来看递推式,全局的比较简单,
global[i][j]=max(local[i][j],global[i-1][j]),
也就是去当前局部最好的,和过往全局最好的中大的那个(因为最后一次交易如果包含当前天一定在局部最好的里面,否则一定在过往全局最优的里面)。对于局部变量的维护,递推式是
local[i][j]=max(global[i-1][j-1]+max(diff,0),local[i-1][j]+diff),
也就是看两个量,第一个是全局到i-1天进行j-1次交易,然后加上今天的交易,如果今天是赚钱的话(也就是前面只要j-1次交易,最后一次交易取当前天),第二个量则是取local第i-1天j次交易,然后加上今天的差值(这里因为local[i-1][j]比如包含第i-1天卖出的交易,所以现在变成第i天卖出,并不会增加交易次数,而且这里无论diff是不是大于0都一定要加上,因为否则就不满足local[i][j]必须在最后一天卖出的条件了)。
 

class Solution 
{
public:
    int maxProfit(vector<int> &prices) 
    {
        if (prices.empty()) return 0;
        int n = prices.size(), g[n][3] = {0}, l[n][3] = {0};
        for (int i = 1; i < prices.size(); ++i) 
        {
            int diff = prices[i] - prices[i - 1];
            for (int j = 1; j <= 2; ++j) 
            {
                l[i][j] = max(g[i - 1][j - 1] + max(diff, 0), l[i - 1][j] + diff);
                g[i][j] = max(l[i][j], g[i - 1][j]);
            }
        }
        return g[n - 1][2];
    }
};

一维写法:

class Solution 
{
public:
    int maxProfit(vector<int> &prices) 
    {
        if (prices.empty()) return 0;
        int g[3] = {0};
        int l[3] = {0};
        for (int i = 0; i < prices.size() - 1; ++i) 
        {
            int diff = prices[i + 1] - prices[i];
            for (int j = 2; j >= 1; --j) 
            {
                l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff);
                g[j] = max(l[j], g[j]);
            }
        }
        return g[2];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值