阅读 CVPR 2018 papers on detecting facial action units

本文概述了CVPR 2018上关于面部动作单元检测的研究,包括弱监督聚类、对抗训练、卷积神经网络滤波器优化和先验概率分类器学习的方法。研究中提到的瓶颈在于数据集的质量和规模,如AFEW、EmotioNet和BP4D。注意力机制和配置学习(如贝叶斯网、CRF)在解决AU的空间和时间定位及识别方面发挥了重要作用。CNN是当前的主要识别工具,结合注意力机制能提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

List

  •   1. Learning Facial Action Units From Web Images With Scalable Weakly Supervised Clustering
  •   2. Weakly Supervised Facial Action Unit Recognition Through Adversarial Training
  •   3. Optimizing Filter Size in Convolutional Neural Networks for Facial Action Unit Recognition
  •   4. Classifier Learning With Prior Probabilities for Facial Action Unit Recognition

Weakly-Supervised Attention and Relation Learning for Facial Action Unit Detection. PAMI submission.

CRF for learning relation. 

Dataset

  AFEW dataset: collected from Web, mostly dark, can be wearing glasses.

  EmotioNet

  BP4D

Thoughts

 This is a field already with a lot of researches going on. The bottleneck is still the dataset. BP4D is comprehensive but sort of small-scale. The EmotioNet is large-scale yet i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值