Bubble sort

博客主要提及了冒泡排序。冒泡排序是一种基础的排序算法,常用于对数组等数据结构中的整数进行排序,通过交换元素位置实现排序目的。
Have an array you need to put in order? Keeping business records and want to sort them by ID number or last name of client? Then you'll need a sorting algorithm. To understand the more complex and efficient sorting algorithms, it's important to first understand the simpler, but slower algorithms. In this article, you'll learn about bubble sort, including a modified bubble sort that's slightly more efficient; insertion sort; and selection sort. Any of these sorting algorithms are good enough for most small tasks, though if you were going to process a large amount of data, you would want to choose one of the sorting algorithms listed on the advanced sorting page.
Bubble sort
The simplest sorting algorithm is bubble sort. The bubble sort works by iterating down an array to be sorted from the first element to the last, comparing each pair of elements and switching their positions if necessary. This process is repeated as many times as necessary, until the array is sorted. Since the worst case scenario is that the array is in reverse order, and that the first element in sorted array is the last element in the starting array, the most exchanges that will be necessary is equal to the length of the array. Here is a simple example:

Given an array 23154 a bubble sort would lead to the following sequence of partially sorted arrays: 21354, 21345, 12345. First the 1 and 3 would be compared and switched, then the 4 and 5. On the next pass, the 1 and 2 would switch, and the array would be in order.

The basic code for bubble sort looks like this, for sorting an integer array:
	for(int x=0; x<n; x++)

	{

		for(int y=0; y<n-1; y++)

		{

			if(array[y]>array[y+1])

			{

				int temp = array[y+1];

				array[y+1] = array[y];

				array[y] = temp;

			}

		}

	}

Notice that this will always loop n times from 0 to n, so the order of this algorithm is O(n^2). This is both the best and worst case scenario because the code contains no way of determining if the array is already in order.

A better version of bubble sort, known as modified bubble sort, includes a flag that is set if an exchange is made after an entire pass over the array. If no exchange is made, then it should be clear that the array is already in order because no two elements need to be switched. In that case, the sort should end. The new best case order for this algorithm is O(n), as if the array is already sorted, then no exchanges are made. You can figure out the code yourself! It only requires a few changes to the original bubble sort.
当前,全球经济格局深刻调整,数字化浪潮席卷各行各业,智能物流作为现代物流发展的必然趋势和关键支撑,正迎来前所未有的发展机遇。以人工智能、物联网、大数据、云计算、区块链等前沿信息技术的快速迭代与深度融合为驱动,智能物流不再是传统物流的简单技术叠加,而是正在经历一场从自动化向智能化、从被动响应向主动预测、从信息孤岛向全面互联的深刻变革。展望2025年,智能物流系统将不再局限于提升效率、降低成本的基本目标,而是要构建一个感知更全面、决策更精准、执行更高效、协同更顺畅的智慧运行体系。这要求我们必须超越传统思维定式,以系统化、前瞻性的视角,全面规划和实施智能物流系统的建设。本实施方案正是基于对行业发展趋势的深刻洞察和对未来需求的精准把握而制定。我们的核心目标在于:通过构建一个集成了先进感知技术、大数据分析引擎、智能决策算法和高效协同平台的综合智能物流系统,实现物流全链路的可视化、透明化和智能化管理。这不仅是技术层面的革新,更是管理模式和服务能力的全面提升。本方案旨在明确系统建设的战略方向、关键任务、技术路径和实施步骤,确保通过系统化部署,有效应对日益复杂的供应链环境,提升整体物流韧性,优化资源配置效率,降低运营成本,并最终为客户创造更卓越的价值体验。我们致力于通过本方案的实施,引领智能物流迈向更高水平,为构建现代化经济体系、推动高质量发展提供强有力的物流保障。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值