Selection sort

博客介绍了选择排序和插入排序两种算法。选择排序通过不断选择最小(或最大)元素置于数组头部,比冒泡排序稍快,效率为n*(n/2),时间复杂度O(n^2)。插入排序则是将数组元素插入到合适位置,使数组逐步有序,并给出了排序示例。
Selection sort is the most conceptually simple of all the sorting algorithms. It works by selecting the smallest (or largest, if you want to sort from big to small) element of the array and placing it at the head of the array. Then the process is repeated for the remainder of the array; the next largest element is selected and put into the next slot, and so on down the line.

Because a selection sort looks at progressively smaller parts of the array each time (as it knows to ignore the front of the array because it is already in order), a selection sort is slightly faster than bubble sort, and can be better than a modified bubble sort.

Here is the code for a simple selection sort:
	for(int x=0; x<n; x++)

	{

		int index_of_min = x;

		for(int y=x; y<n; y++)

		{

			if(array[index_of_min]<array[y])

			{

				index_of_min = y;

			}

		}

		int temp = array[x];

		array[x] = array[index_of_min];

		array[index_of_min] = temp;

	}

	
The first loop goes from 0 to n, and the second loop goes from x to n, so it goes from 0 to n, then from 1 to n, then from 2 to n and so on. The multiplication works out so that the efficiency is n*(n/2), though the order is still O(n^2).

Insertion Sort

Insertion sort does exactly what you would expect: it inserts each element of the array into its proper position, leaving progressively larger stretches of the array sorted. What this means in practice is that the sort iterates down an array, and the part of the array already covered is in order; then, the current element of the array is inserted into the proper position at the head of the array, and the rest of the elements are moved down, using the space just vacated by the element inserted as the final space.

Here is an example: for sorting the array the array 52314 First, 2 is inserted before 5, resulting in 25314 Then, 3 is inserted between 2 and 5, resulting in 23514 Next, one is inserted at the start, 12354 Finally, 4 is inserted between 3 and 5, 12345

While the code to do this is fairly straightforward, I'll leave it as an exercise to the reader.
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值