应用Keras的主要步骤为
- 定义/创建模型
- 编译模型
- 拟合/训练模型
- 评估/测试模型
详见Keras官方文档 Keras documentation.
先把必要的包都导入进来
import numpy as np
from tensorflow import keras
from keras import layers
from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from keras.models import Model
定义/创建模型
我这里创建了一个简单的卷积网络
def model(input_shape):
# 定义一个 shape 是 input_shape 的占位符(placeholder)作为输入的tensor变量
X_input = Input(input_shape)
# 用零填充 X_input 的边界(ZeroPadding)
X = ZeroPadding2D((3, 3))(X_input)
# 对 X 应用 “卷积—>正则化—>ReLU”
X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X)
X = BatchNormalization(axis = 3, name = 'bn0')(X)
X = Activation('relu')(X)
# 池化
X = MaxPooling2D((2, 2), name = 'max_pool')(X)
# 对 X 进行 平滑(Flatten),再应用到全连接层
X = Flatten()(X)
Y = Dense(1, activation = 'sigmoid', name = 'fc')(X)
model = Model(input = X_input, outputs = Y, name = 'myModel')
return model
myModel = model((64, 64, 3))
编译模型
model.compile(optimizer="...", loss="...", metrics=["accuracy"])
myModel.compile(optimizer=keras.optimizers.Adam(), loss = 'binary_crossentropy', metrics=['accuracy'])
拟合/训练模型
model.fit(x = ..., y = ..., batch_size = ..., epochs = ...)
myModel.fit(x = X_train, y = Y_train, batch_size = 16, epochs = 6)
评估/测试模型
model.evaluate(x = ..., y = ...)
perds = myModel.evaluate(x = X_test, y = Y_test)
本文详细介绍使用Keras构建深度学习模型的四个主要步骤:定义/创建模型、编译模型、拟合/训练模型和评估/测试模型。通过示例展示如何创建卷积神经网络,并完成从模型定义到训练评估的全过程。
762

被折叠的 条评论
为什么被折叠?



