文章目录
491.递增子序列
思路:
代码
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> path=new LinkedList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backtracking(nums,0);
return res;
}
public void backtracking(int[] nums,int startIndex){
// if(startIndex>=nums.length-1)return;
if(path.size()>1){
res.add(new ArrayList<>(path));
}
int[] used = new int[201];
for(int i=startIndex;i<nums.length;i++){
if(!path.isEmpty()&&path.getLast()> nums[i]|| (used[nums[i]+100]==1)){
continue;
}
used[nums[i]+100]=1;
path.add(nums[i]);
backtracking(nums,i+1);
path.removeLast();
}
}
}
思路:优化
通过数组去重,取代hashset
代码:
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> path=new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backtracking(nums,0);
return res;
}
public void backtracking(int[] nums,int startIndex){
// if(startIndex>=nums.length-1)return;
if(path.size()>1){
res.add(new ArrayList<>(path));
}
int[] used = new int[201];
for(int i=startIndex;i<nums.length;i++){
if(!path.isEmpty()&&path.get(path.size() -1 ) > nums[i]|| (used[nums[i]+100]!=0)){
continue;
}
used[nums[i]+100]=1;
path.add(nums[i]);
backtracking(nums,i+1);
path.remove(path.size() -1);
}
}
}
46.全排列
思路
代码一:使用used数组
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> path = new ArrayList<>();
public List<List<Integer>> permute(int[] nums) {
boolean[] used=new boolean[nums.length];
backtracking(nums,used);
return res;
}
public void backtracking(int[] nums,boolean[] used){
if(path.size()==nums.length){
res.add(new ArrayList<>(path));
return;
}
for(int i=0;i<nums.length;i++){
// System.out.println("数值"+nums[i]+"布尔值"+used[nums[i]+10]);
if(used[i]){
continue;
}
path.add(nums[i]);
used[i]=true;
backtracking(nums,used);
used[i]=false;
path.remove(path.size()-1);
}
}
}
代码二:使用path判断元素
path是linkedlist
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> path = new LinkedList<>();
public List<List<Integer>> permute(int[] nums) {
// boolean[] used=new boolean[nums.length];
backtracking(nums);
return res;
}
public void backtracking(int[] nums){
if(path.size()==nums.length){
res.add(new ArrayList<>(path));
return;
}
for(int i=0;i<nums.length;i++){
// System.out.println("数值"+nums[i]+"布尔值"+used[nums[i]+10]);
if(path.contains(nums[i])){
continue;
}
path.add(nums[i]);
backtracking(nums);
path.removeLast();
}
}
}
47.全排列 II
思路一:层节点和路径都是用used数组做记录
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> path = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums) {
boolean[] used=new boolean[nums.length];
backtracking(nums,used);
return res;
}
public void backtracking(int[] nums,boolean[] used){
if(path.size()==nums.length){
res.add(new ArrayList<>(path));
return;
}
int[] cengused=new int[21];
for(int i=0;i<nums.length;i++){
// System.out.println("数值"+nums[i]+"布尔值"+used[nums[i]+10]);
if(used[i]||cengused[nums[i]+10]==1){
continue;
}
path.add(nums[i]);
cengused[nums[i]+10]=1;
used[i]=true;
backtracking(nums,used);
used[i]=false;
path.remove(path.size()-1);
}
}
}
思路二:层通过排序后是否重复过滤
class Solution {
//存放结果
List<List<Integer>> result = new ArrayList<>();
//暂存结果
List<Integer> path = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums) {
boolean[] used = new boolean[nums.length];
Arrays.fill(used, false);
Arrays.sort(nums);
backTrack(nums, used);
return result;
}
private void backTrack(int[] nums, boolean[] used) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++) {
// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过
// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过
// 如果同⼀树层nums[i - 1]使⽤过则直接跳过
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
//如果同⼀树⽀nums[i]没使⽤过开始处理
if (used[i] == false) {
used[i] = true;//标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用
path.add(nums[i]);
backTrack(nums, used);
path.remove(path.size() - 1);//回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复
used[i] = false;//回溯
}
}
}
}