JSR168 Portlet related

本文深入探讨了PortletRequest的概念及其在Portlet容器中的作用,解释了RenderParameters的功能,以及如何通过JSFBridge解决Faces应用中请求范围不一致的问题。

1. portlet request divide  into action request and render request

 

Render parameters allow the portlet to store its navigational state.
Render parameters stay the same for subsequent render requests and only change when the portlet receives a new action. This enables bookmarkability and solves the browser back button problem.

 

2. portlet request:  a call from from the client (portal server) to process some information or render some markup.  A portlet request is received and managed by a portlet container. The portlet container executes the targeted portlet to process the request.  There are two things that distinguish portlet requests from typical http (web requests):  the client sending the portlet request is a portal application not an end user (browser) and multiple (two) requests are sent to submit data and render a markup response.

 

3. portlet request scope:  the duration of a request processed by the portlet container.  Because portlets separate action processing and rendering in two distinct requests, client state stored in the request scope does not carry forward from a portlet's action to its render.

 

4. JSF Bridge

As Faces executes in the context of an underlying container its request scope is restricted by that provided by the container.  However, the Faces model is based on the servlet model and hence expects a single request for processing both user interactions and rendering.  Because this isn't the behavior in a portlet container, Faces does not execute properly if the Faces application depends on request scoped data established during action processing and referenced during rendering.  

 

the bridge preserves data stored at request scope so that it can be restored on subsequent render requests.  I.e. where in a regular portlet environment, each action and render request processing starts with an empty data set in its request scope and any data added to this scope during processing is destroyed when the request completes, the bridge preserves this state and restores it into the request scope on subsequent render requests.

 

 

 

 

  • 大小: 38 KB
光伏储能虚拟同步发电机VSG并网仿真模型(Similink仿真实现)内容概要:本文档介绍了光伏储能虚拟同步发电机(VSG)并网仿真模型的Simulink实现方法,重点在于通过建立光伏储能系统与虚拟同步发电机相结合的仿真模型,模拟其在并网过程中的动态响应与控制特性。该模型借鉴了同步发电机的惯性和阻尼特性,提升了新能源并网系统的频率和电压支撑能力,增强了系统的稳定性与可控性。文档还提及相关电力系统仿真技术的应用,包括逆变器控制、储能配置、并网稳定性分析等,并提供了完整的Simulink仿真文件及技术支持资源链接,便于科研人员复现与二次开发。; 适合人群:电气工程、自动化、能源系统等相关专业的研究生、科研人员及从事新能源并网技术开发的工程师。; 使用场景及目标:①用于研究光伏储能系统在弱电网条件下的并网稳定性问题;②掌握虚拟同步发电机(VSG)控制策略的设计与仿真方法;③支持高水平论文(如EI/SCI)的模型复现与创新研究;④为微电网、智能电网中的分布式能源接入提供技术参考。; 阅读建议:建议结合提供的Simulink模型文件与文档说明逐步操作,重点关注VSG控制模块的参数设置与动态响应分析,同时可延伸学习文中提及的MPPT、储能管理、谐波分析等相关技术,以提升综合仿真能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值