1.原理
对数据矩阵使用广播机制
降维操作
2.代码实现
import numpy as np
import torch
import matplotlib.pyplot as plt
# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])
y_data = torch.from_numpy(xy[:, [-1]])
#
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid() # 激活函数
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss(reduction='mean') # 均值
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(10):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
本文介绍了如何使用PyTorch库对糖尿病数据进行广播机制降维,通过构建一个包含多个线性层的模型并应用sigmoid激活函数。文章详细展示了如何训练模型,使用BCELoss作为损失函数,并可视化训练过程。
331

被折叠的 条评论
为什么被折叠?



