题目 | 答案 |
---|---|
y = y = arctan 1 x + 3 − x y=y=\arctan{\frac{1}{x}}+{\sqrt{3-x}} y=y=arctanx1+3−x的定义域为? | y = ( − ∞ , 0 ) ∪ ( 0 , 3 ] y=(-\infty,0)\cup(0,3] y=(−∞,0)∪(0,3] |
设 y = lim x → 0 x f ( 2 x ) = 2 y=\lim_{x\to0}\frac{x}{f(2x)}=2 y=limx→0f(2x)x=2,则 y = lim x → 0 f ( 3 x ) sin x y=\operatorname*{lim}_{x\to0}{\frac{f\left(3x\right)}{\sin x}} y=limx→0sinxf(3x)=? | ![]() |
![]() | ![]() |
![]() | y = 1 1 − x y=\frac1{1-x} y=1−x1 |
![]() | 原式= y = d ( y ′ ) d y = d y ′ / d x d y / d x = − y ′ ′ ( y ′ ) 2 1 y ′ = y ′ ′ ( y ′ ) 3 y=\frac{d(y^{\prime})}{dy}=\frac{dy^{\prime}/dx}{dy/dx}=\frac{\frac{-y^{\prime\prime}}{(y^{\prime})^{2}}}{\frac{1}{y^{\prime}}}=\frac{y^{\prime\prime}}{(y^{\prime})^{3}} y=dyd(y′)=dy/dxdy′/dx=y′1(y′)2−y′′=(y′)3y′′ |
![]() | 50 49 48 …… 1 -1 -2 ……-50 y = ( 50 ! ) 2 y=\begin{pmatrix}50!\end{pmatrix}^2 y=(50!)2 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() ![]() |
![]() | ![]() |
![]() | ![]() |
求导![]() ![]() | ![]() |
![]() | 答案:cos (sin x)f’[f(x)] 和 {f[f(x)]}’不一样前者:cos (sin x)后者:cos (sin x ) cos x |
![]() | ![]() |
![]() | ![]() |
y = lim x → ∞ ( 1 + x 3 + x 2 5 ) x y=\lim_{x\to\infty}(1+\frac{x}{3}+\frac{x^{2}}{5})^{x} y=limx→∞(1+3x+5x2)x | ![]() |
y = lim x → ∞ ( e x + x ) 1 x y=\lim_{x\to\infty}(e^x+x)^{\frac1x} y=limx→∞(ex+x)x1 | |
![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
y = x 2 arctan x 1 + x 2 y=\frac{x^2\arctan x}{1+x^2} y=1+x2x2arctanx | X2=(x2+1)-1原式=arctanx - arctanx/(1+x2) |
y = f ( x ) = ∫ 0 2 x f ( t 2 ) d t + ln 2 y=f(x)=\int_0^{2x}f\left(\frac t2\right)dt+\ln2 y=f(x)=∫02xf(2t)dt+ln2 | 法一:设f(x)=A+ln2法二:左右同时求导,可分离变量 |
y = ∫ x ln x − ln x x 2 d x y=\int\frac{x\ln x-\ln x}{x^2}dx y=∫x2xlnx−lnxdx | ![]() |
y = ∫ x x − 1 d x y=\int\frac{\sqrt{x}}{\sqrt{x}-1}dx y=∫x−1xdx | y = x = t y=\sqrt{x}=t y=x=t |
![]() | 将2代入1,y’’=esinx0>0,所以凹的,又f’(x)=0,所以极小值。 |
![]() | C |
![]() | ![]() |
![]() | lim x → + ∞ e x + 1 e x + x = 1 \operatorname*{lim}_{x\to+\infty}\frac{e^{x}+1}{e^{x}+x}=1 limx→+∞ex+xex+1=1 |
高等数学 上册 错题集
于 2023-08-19 02:58:35 首次发布