44、构建基于 LiveCycle Data Services 的图书馆管理系统

构建基于 LiveCycle Data Services 的图书馆管理系统

1. LiveCycle Data Services 简介

LiveCycle Data Services(LCDS)提供了一系列强大的服务,可用于创建处理分布式数据的应用程序。其中,数据管理服务(Data Management Services)尤为突出,它能实现客户端和服务器端数据的同步、实时数据更新,还支持按需数据分页以及与偶尔连接的客户端协作。

在某些情况下,当在一个浏览器窗口中操作数据时,其他连接的客户端能立即反映这些更改。这是因为 DataService 组件的 autoSync 属性被设置为 true,而 DMS 基于 LiveCycle Data Services ES Message Service 实现了实时操作。不过,在一些应用中,可能不需要 autoSync 和 autoCommit 功能,此时可以在 DataService 组件中将这些属性设置为 false,示例代码如下:

<mx:DataService id="bookDS" destination="sql-bookDest" 
autoCommit="false"
autoSyncEnabled="false"
/>
2. 图书馆管理系统概述

我们要构建的是一个图书馆管理系统,它由多个部分组成:
- HSQL 数据库 :存储书籍数据。
- LCDS 数据管理配置文件 :声明用于操作和检索数据库中数据的

【负荷预测】基于VMD-CNN-LSTM的负荷预测研究(Python代码实现)内容概要:本文介绍了基于变分模态分解(VMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合的VMD-CNN-LSTM模型在负荷预测中的研究与应用,采用Python代码实现。该方法首先利用VMD对原始负荷数据进行分解,降低序列复杂性并提取不同频率的模态分量;随后通过CNN提取各模态的局部特征;最后由LSTM捕捉时间序列的长期依赖关系,实现高精度的负荷预测。该模型有效提升了预测精度,尤其适用于非平稳、非线性的电力负荷数据,具有较强的鲁棒性和泛化能力。; 适合人群:具备一定Python编程基础和深度学习背景,从事电力系统、能源管理或时间序列预测相关研究的科研人员及工程技术人员,尤其适合研究生、高校教师及电力行业从业者。; 使用场景及目标:①应用于日前、日内及实时负荷预测场景,支持智慧电网调度与能源优化管理;②为研究复合型深度学习模型在非线性时间序列预测中的设计与实现提供参考;③可用于学术复现、课题研究或实际项目开发中提升预测性能。; 阅读建议:建议读者结合提供的Python代码,深入理解VMD信号分解机制、CNN特征提取原理及LSTM时序建模过程,通过实验调试参数(如VMD的分解层数K、惩罚因子α等)优化模型性能,并可进一步拓展至风电、光伏等其他能源预测领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值