题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1059
题目大意:有6种marbles,其价值分别为1…6,每种marbles有一定的数量,请问是否可以将这些marbles分成两部分,每部分的价值总量相等,即等于所有marbles的总价值的一半。
题意分析:我们可以考虑用01背包或者多重背包的问题解决。至于01背包和多重背包问题,可参考:http://blog.youkuaiyun.com/dzyhenry/article/details/8883528
注意本题中的c[i]与w[i]是相同的,即消耗和价值是相同的,所以如果f[v]等于v,则背包必然是恰好填满的。
多重背包:
#include<stdio.h>
#include<string.h>
int marbles[7];
int dp[60001];
int totalV;
int halfV;
void zeroOnePack(int cost, int weight)
{
int i;
for(i=halfV; i>=cost; i--){
if(dp[i] < dp[i-cost]+weight){
dp[i] = dp[i-cost]+weight;
}
}
}
void completePack(int cost, int weight)
{
int i;
for(i=cost; i<=halfV; i++){
if(dp[i] < dp[i-cost]+weight){
dp[i] = dp[i-cost]+weight;
}
}
}
void multplePack(int cost, int weight, int amount)
{
int i, k;
if(amount*cost >= halfV){
completePack(cost, weight);
}
else{
for(k=1; k<amount; k<<=1){
zeroOnePack(cost*k, weight*k);
amount -= k;
}
zeroOnePack(cost*amount, weight*amount);
}
}
int main()
{
int n, i, j, k, t;
t = 1;
while(scanf("%d", &marbles[1]) != EOF){
totalV = marbles[1];
for(i=2; i<=6; i++){
scanf("%d", &marbles[i]);
totalV += marbles[i]*i;
}
if(!totalV)
break;
if(totalV & 1){
printf("Collection #%d:\n", t++);
printf("Can't be divided.\n\n");
continue;
}
memset(dp, 0, sizeof(dp));
halfV = totalV / 2;
for(i=1; i<=6; i++){
multplePack(i, i, marbles[i]);
}
if(dp[halfV] == halfV){
printf("Collection #%d:\n", t++);
printf("Can be divided.\n\n");
}
else{
printf("Collection #%d:\n", t++);
printf("Can't be divided.\n\n");
}
}
return 0;
}
01背包:
#include<stdio.h>
#include<string.h>
int marbles[7];
int dp[60000];
int totalV;
int halfV;
int main()
{
int n, i, j, k, t;
t = 1;
while(scanf("%d", &marbles[1]) != EOF){
memset(dp, 0, sizeof(dp));
totalV = marbles[1];
for(i=2; i<=6; i++){
scanf("%d", &marbles[i]);
totalV += marbles[i]*i;
}
if(!totalV)
break;
if(totalV & 1){
printf("Collection #%d:\n", t++);
printf("Can't be divided.\n\n");
continue;
}
halfV = totalV / 2;
for(i=0; i<=marbles[1]&&i<=halfV; i++)
dp[i] = 1;
for(i=2; i<=6; i++){
if(!marbles[i])
continue;
for(j=halfV; j>=0; j--){
if(dp[j] == 0)
continue;
for(k=1; k<=marbles[i]&&k*i+j<=halfV; k++){
if(dp[k*i+j])
break;
dp[k*i+j] = 1;
}
}
}
if(dp[halfV]){
printf("Collection #%d:\n", t++);
printf("Can be divided.\n\n");
}
else{
printf("Collection #%d:\n", t++);
printf("Can't be divided.\n\n");
}
}
return 0;
}