求解微分方程

可以仔细看看高斯消元法

 

方法1:

 

#include "stdio.h"

#include "stdlib.h"

 

void RKT(t,y,n,h,k,z)

int n;                                      /*微分方程组中方程的个数,也是未知函数的个数*/

int k;                                      /*积分的步数(包括起始点这一步)*/

double t;                     /*积分的起始点t0*/

double h;                    /*积分的步长*/

double y[];                           /*存放n个未知函数在起始点t处的函数值,返回时,其初值在二维数组z的第零列中*/

double z[];                           /*二维数组,体积为n x k.返回k个积分点上的n个未知函数值*/

{

         extern void Func();                                  /*声明要求解的微分方程组*/

    int i,j,l;

    double a[4],*b,*d;

    b=malloc(n*sizeof(double));                  /*分配存储空间*/

         if(b == NULL)

         {

                   printf("内存分配失败\n");

                   exit(1);

         }

    d=malloc(n*sizeof(double));                  /*分配存储空间*/

         if(d == NULL)

         {

                   printf("内存分配失败\n");

                   exit(1);

         }

         /*后面应用RK4公式中用到的系数*/

    a[0]=h/2.0;                                               

         a[1]=h/2.0;

    a[2]=h;

         a[3]=h;

    for(i=0; i<=n-1; i++)

                  z[i*k]=y[i];                                     /*将初值赋给数组z的相应位置*/

    for(l=1; l<=k-1; l++)

    {

                  Func(y,d);

        for (i=0; i<=n-1; i++)

                            b[i]=y[i];

        for (j=0; j<=2; j++)

        {

                            for (i=0; i<=n-1; i++)

            {

                                     y[i]=z[i*k+l-1]+a[j]*d[i];

                b[i]=b[i]+a[j+1]*d[i]/3.0;

            }

            Func(y,d);

        }

        for(i=0; i<=n-1; i++)

          y[i]=b[i]+h*d[i]/6.0;

        for(i=0; i<=n-1; i++)

          z[i*k+l]=y[i];

        t=t+h;

         }

    free(b);                          /*释放存储空间*/

         free(d);                         /*释放存储空间*/

    return;

}

main()

{

         int i,j;

    double t,h,y[3],z[3][11];

    y[0]=-1.0;

         y[1]=0.0;

         y[2]=1.0;

    t=0.0;

         h=0.01;

    RKT(t,y,3,h,11,z);

    printf("\n");

    for (i=0; i<=10; i++)                            /*打印输出结果*/

    {

                   t=i*h;

        printf("t=%5.2f\t   ",t);

        for (j=0; j<=2; j++)

          printf("y(%d)=%e  ",j,z[j][i]);

        printf("\n");

         }

}

 

void Func(y,d)

double y[],d[];

{

         d[0]=y[1];          /*y0'=y1*/

         d[1]=-y[0];                  /*y1'=y0*/

         d[2]=-y[2];                  /*y2'=y2*/

         return;

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值