JVM-(JMM)内存模型(三)

本文深入探讨Java内存模型(JMM)及其与线程间变量共享的关系,解释了JMM如何确保原子性、可见性和有序性。并通过实例分析volatile关键字的作用及其实现原理,帮助理解轻量级同步机制。

上篇介绍JVM结构,即:堆(线程共享),下面介绍 JMM(内存模型)即jvm内存是这么管理的。与堆,栈 没有关系。

一,JMM : JVM的内存模型

JMM主要是为了规定了线程和内存之间的一些关系。

根据JMM的设计,系统存在一个主内存(Main Memory),Java中所有变量都储存在主存中,对于所有线程都是共享的。每条线程都有自己的工作内存(Working Memory)。

工作内存中保存的是主存中某些变量的拷贝,线程对所有变量的操作都是在工作内存中进行,线程之间无法相互直接访问,变量传递均需要通过主存完成。

或者:如下图更加清晰

第一步: read 或者 load 将主内存的变量读取或加载到工作内存(本地内存) 保存为变量副本。

第二步:当工作内存(本地内存)中的变量修改后,需要同步到主内存中, 即 store或write操作。

Java内存模型的承诺: 即原子性?可见性?有序性?JMM是如何保证这3个特性?

二,JMM提供的解决方案


      在Java内存模型中都提供一套解决方案供Java工程师在开发过程使用,如原子性问题,除了JVM自身提供的对基本数据类型读写操作的原子性外,对于方法级别或者代码块级别的原子性操作,可以使用synchronized关键字或者重入锁(ReentrantLock)保证程序执行的原子性。

      而工作内存与主内存同步延迟现象导致的可见性问题,可以使用synchronized关键字或者volatile关键字解决,它们都可以使一个线程修改后的变量立即对其他线程可见。对于指令重排导致的可见性问题和有序性问题,则可以利用volatile关键字解决,因为volatile的另外一个作用就是禁止重排序优化,关于volatile稍后会进一步分析。除了靠sychronized和volatile关键字来保证原子性、可见性以及有序性外,JMM内部还定义一套happens-before 原则来保证多线程环境下两个操作间的原子性、可见性以及有序性。

三,volatile内存语义


volatile在并发编程中很常见,但也容易被滥用,现在我们就进一步分析volatile关键字的语义。volatile是Java虚拟机提供的轻量级的同步机制。volatile关键字有如下两个作用

  • 保证被volatile修饰的共享gong’x变量对所有线程总数可见的,也就是当一个线程修改了一个被volatile修饰共享变量的值,新值总数可以被其他线程立即得知。
  • 禁止指令重排序优化。

volatile的可见性

  关于volatile的可见性作用,我们必须意识到被volatile修饰的变量对所有线程总数立即可见的,对volatile变量的所有写操作总是能立刻反应到其他线程中,但是对于volatile变量运算操作在多线程环境并不保证安全性,如下

public class VolatileVisibility {
    public static volatile int i =0;

    public static void increase(){
        i++;
    }
}

       多条线程同时调用increase()方法的话,就会出现线程安全问题,毕竟i++;操作并不具备原子性,该操作是先读取值,然后写回一个新值,相当于原来的值加上1,分两步完成,如果第二个线程在第一个线程读取旧值和写回新值期间读取i的域值,那么第二个线程就会与第一个线程一起看到同一个值,并执行相同值的加1操作,这也就造成了线程安全失败,因此对于increase方法必须使用synchronized修饰,以便保证线程安全,需要注意的是一旦使用synchronized修饰方法后,由于synchronized本身也具备与volatile相同的特性,即可见性,因此在这样种情况下就完全可以省去volatile修饰变量。

public class VolatileVisibility {
    public static int i =0;

    public synchronized static void increase(){
        i++;
    }
}

现在来看另外一种场景,可以使用volatile修饰变量达到线程安全的目的,如下

public class VolatileSafe {

    volatile boolean close;

    public void close(){
        close=true;
    }

    public void doWork(){
        while (!close){
            System.out.println("safe....");
        }
    }
}

由于对于boolean变量close值的修改属于原子性操作,因此可以通过使用volatile修饰变量close,使用该变量对其他线程立即可见,从而达到线程安全的目的。

那么JMM是如何实现让volatile变量对其他线程立即可见的呢?

     实际上,当写一个volatile变量时,JMM会把该线程对应的工作内存中的共享变量值刷新到主内存中,当读取一个volatile变量时,JMM会把该线程对应的工作内存置为无效,那么该线程将只能从主内存中重新读取共享变量。volatile变量正是通过这种写-读方式实现对其他线程可见(但其内存语义实现则是通过内存屏障,稍后会说明。

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值