难度:中等
题目
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
解答
思路
回溯
知识点
代码
class Solution {
public:
int movingCount(int m, int n, int k) {
int grid_number=0;
vector<vector<bool>> is_walked_grid(m,vector(n,false));
__movingCountCore(m,n,k,0,0,grid_number,is_walked_grid);
return grid_number;
}
void __movingCountCore(int m,int n,int k,int i,int j,int& grid_number,vector<vector<bool>>& is_walked_grid){
if(i>=0&&i<m&&j>=0&&j<n){
if(!is_walked_grid[i][j]){
is_walked_grid[i][j]=true;
if(__calDigit(i)+__calDigit(j)<=k){
grid_number++;
__movingCountCore(m,n,k,i,j+1,grid_number,is_walked_grid);
__movingCountCore(m,n,k,i-1,j,grid_number,is_walked_grid);
__movingCountCore(m,n,k,i,j-1,grid_number,is_walked_grid);
__movingCountCore(m,n,k,i+1,j,grid_number,is_walked_grid);
}
}
}
}
int __calDigit(int number){
int sum=0;
while(number>0){
sum+=number%10;
number/=10;
}
return sum;
}
};