Overview of ACE

ACE(自适应通信环境)是一款开源的、面向对象的框架,它实现了用于并发通信软件的多种核心设计模式。该框架提供了丰富的可重用C++包装器和组件集,支持跨平台的通信软件任务,包括事件复用、信号处理、服务初始化等。

Overview of ACE

From:http://www.cse.wustl.edu/~schmidt/ACE-overview.html

 

The ADAPTIVE Communication Environment (ACE) is a freely available, open-source object-oriented (OO) framework that implements many core patterns for concurrent communication software. ACE provides a rich set of reusable C++ wrapper facades and framework components that perform common communication software tasks across a range of OS platforms. The communication software tasks provided by ACE include event demultiplexing and event handler dispatching, signal handling, service initialization, interprocess communication, shared memory management, message routing, dynamic (re)configuration of distributed services, concurrent execution and synchronization.

ACE is targeted for developers of high-performance and real-time communication services and applications. It simplifies the development of OO network applications and services that utilize interprocess communication, event demultiplexing, explicit dynamic linking, and concurrency. In addition, ACE automates system configuration and reconfiguration by dynamically linking services into applications at run-time and executing these services in one or more processes or threads.

ACE continues to improve and its future is bright. ACE is supported commercially by multiple companies using an open-source business model. In addition, many members of the ACE development team are currently working on building The ACE ORB (TAO).

 


 

Benefits of Using ACE?

Some of the many benefits of using ACE include:

  • Increased portability -- ACE components make it easy to write concurrent networked applications on one OS platform and quickly port them to many other OS platforms. Moreover, because ACE is open source, free software, you never have to worry about getting locked into a particular operating system platform or compiler configuration.

     

  • Increased software quality -- ACE components are designed using many key patterns that increase key qualities, such as flexibility, extensibility, reusability, and modularity, of communication software.

     

  • Increased efficiency and predictability -- ACE is carefully designed to support a wide range of application quality of service (QoS) requirements, including low latency for delay-sensitive applications, high performance for bandwidth-intensive applications, and predictability for real-time applications.

     

  • Easier transition to standard higher-level middleware -- ACE provides the reusable components and patterns used in The ACE ORB (TAO), which is an open-source standard-compliant implementation of CORBA that's optimized for high-performance and real-time systems. Thus, ACE and TAO are designed to work well together in order to provide comprehensive middleware solutions.

     


The Structure and Functionality of ACE

The following diagram illustrates the key components in ACE and their hierarchical relationships:

 

The structure and participants of the layers in this diagram are described below.

 


The ACE OS Adapter Layer

This layer resides directly atop the native OS APIs that are written in C. It provides a small footprint, "POSIX-like" OS adaptation layer that shields the other layers and components in ACE from platform-specific dependencies associated with the following OS APIs:

  • Concurrency and synchronization -- ACE's adaptation layer encapsulates OS APIs for multi-threading, multi-processing, and synchronization.

     

  • Interprocess communication (IPC) and shared memory -- ACE's adaptation layer encapsulates OS APIs for local and remote IPC and shared memory.

     

  • Event demultiplexing mechanisms -- ACE's adaptation layer encapsulates OS APIs for synchronous and asynchronous demultiplexing I/O-based, timer-based, signal-based, and synchronization-based events.

     

  • Explicit dynamic linking -- ACE's adaptation layer encapsulates OS APIs for explicit dynamic linking, which allows application services to be configured at installation-time or run-time.

     

  • File system mechanisms -- ACE's adaptation layer encapsulates OS file system APIs for manipulating files and directories.

     

The portability of ACE's OS adaptation layer enables it to run on a many operating systems. ACE has been ported and tested on a wide range of OS platforms including Windows (i.e., WinNT 3.5.x, 4.x, 2000, Embedded NT, XP, Win95/98, and WinCE using MSVC++, Borland C++ Builder, and IBM's Visual Age on 32- and 64-bit Intel and Alpha platforms), Mac OS X, most versions of UNIX (e.g., Solaris on SPARC and Intel, SGI IRIX 5.x and 6.x, DG/UX, HP-UX 10.x, and 11.x, Tru64UNIX 3.x and 4.x, AIX 3.x, 4.x, 5.x, DG/UX, UnixWare, SCO, and freely available UNIX implementations, such as Debian Linux 2.x, RedHat Linux 5.2, 6.x, 7.x, 8x, and 9.x, as well as the various Enterprise editions, SUSE Linux 8.1 and 9.2, Timesys Linux, FreeBSD, and NetBSD), real-time operating systems (e.g., LynxOS, VxWorks, ChorusOS, QnX Neutrino, RTEMS, OS9, and PSoS), OpenVMS, MVS OpenEdition, and CRAY UNICOS. A single source tree is used for all these platforms. There is also a Java version of ACE.

Because of the abstraction provided by ACE's OS adaptation layer, a single source tree is used for all these platforms. This design greatly simplies the portability and maintainability of ACE.

 


C++ Wrapper Facades for OS Interfaces

It is possible to program highly portable C++ applications directly atop ACE's OS adaptation layer. However, most ACE developers use the C++ wrapper facade layer shown in the figure above. The ACE C++ wrapper facades simplify application development by providing typesafe C++ interfaces that encapsulate and enhance the native OS concurrency, communication, memory management, event demultiplexing, dynamic linking, and file system APIs. Applications can combine and compose these wrappers by selectively inheriting, aggregating, and/or instantiating the following components:

  • Concurrency and synchronization components -- ACE abstracts native OS multi-threading and multi-processing mechanisms like mutexes and semaphores to create higher-level OO concurrency abstractions like Active Objects and Polymorphic Futures.

     

  • IPC and filesystem components -- The ACE C++ wrappers encapsulate local and/or remote IPC mechanisms, such as sockets, TLI, UNIX FIFOs and STREAM pipes, and Win32 Named Pipes. In addition, the ACE C++ wrappers encapsulate the OS filesystem APIs.

     

  • Memory management components -- The ACE memory management components provide a flexible and extensible abstraction for managing dynamic allocation and deallocation of interprocess shared memory and intraprocess heap memory.

     

The C++ wrappers provide many of the same features as the OS adaptation layer in ACE. However, these features are structured in terms of C++ classes and objects, rather than stand-alone C functions. This OO packaging helps to reduce the effort required to learn and use ACE correctly.

For instance, the use of C++ improves application robustness because the C++ wrappers are strongly typed. Therefore, compilers can detect type system violations at compile-time rather than at run-time. In contrast, it is not possible to detect typesystem violations for C-level OS APIs, such as sockets or filesystem I/O, until run-time.

ACE employs a number of techniques to minimize or eliminate performance overhead. For instance, ACE uses C++ inlining extensively to eliminate method call overhead that would otherwise be incurred from the additional typesafety and levels of abstraction provided by its OS adaptation layer and the C++ wrappers In addition, ACE avoids the use of virtual methods for performance-critical wrappers, such as send/recv methods for socket and file I/O.

 


Frameworks

ACE also contains a higher-level network programming framework that integrates and enhances the lower-level C++ wrapper facades. This framework supports the dynamic configuration of concurrent distributed services into applications. The framework portion of ACE contains the following components:

 

  • Event demultiplexing components -- The ACE Reactor and Proactor are extensible, object-oriented demultiplexers that dispatch application-specific handlers in response to various types of I/O-based, timer-based, signal-based, and synchronization-based events.

     

  • Service initialization components -- The ACE Acceptor and Connector components decouple the active and passive initialization roles, respectively, from application-specific tasks that communication services perform once initialization is complete.

     

  • Service configuration components -- The ACE Service Configurator supports the configuration of applications whose services may be assembled dynamically at installation-time and/or run-time.

     

  • Hierarchically-layered stream components -- The ACE Streams components simplify the development of communication software applications, such as user-level protocol stacks, that are composed of hierarchically-layered services.

     

  • ORB adapter components -- ACE can be integrated seamlessly with single-threaded and multi-threaded CORBA implementations via its ORB adapters.

     

The ACE framework components facilitate the development of communication software that can be updated and extended without the need to modify, recompile, relink, or often restart running applications. This flexibility is achieved in ACE by combining (1) C++ language features, such as templates, inheritance, and dynamic binding, (2) design patterns, such as Abstract Factory, Strategy, and Service Configurator, and (3) OS mechanisms, such as explicit dynamic linking and multi-threading.

 


Distributed Services and Components

In addition to its OS adaptation layer, C++ wrapper facades, and framework components, ACE provides a standard library of distributed services that are packaged as self-contained components. Although these service components are not strictly part of the ACE framework library, these service components play two roles in ACE:

 

  1. Factoring out reusable distributed application building blocks -- These service components provide reusable implementations of common distributed application tasks such as naming, event routing, logging, time synchronization, and network locking.

     

  2. Demonstrating common use-cases of ACE components -- The distributed services also demonstrate how ACE components like Reactors, Service Configurators, Acceptors and Connectors, Active Objects, and IPC wrappers can be used effectively to develop flexible, efficient, and reliable communication software.

Higher-level Distributed Computing Middleware Components

Developing robust, extensible, and efficient communication applications is challenging, even when using a communication framework like ACE. In particular, developers must still master a number of complex OS and communication concepts such as:

 

  • Network addressing and service identification.
  • Presentation conversions, such as encryption, compression, and network byte-ordering conversions between heterogeneous end-systems with alternative processor byte-orderings.
  • Process and thread creation and synchronization.
  • System call and library routine interfaces to local and remote interprocess communication (IPC) mechanisms.

It is possible to alleviate some of the complexity of developing communication applications by employing higher-level distributed computing middleware, such as CORBA, DCOM, or Java RMI. Higher-level distributed computing middleware resides between clients and servers and automates many tedious and error-prone aspects of distributed application development, including:

 

  • Authentication, authorization, and data security.
  • Service location and binding.
  • Service registration and activation.
  • Demultiplexing and dispatching in response to events.
  • Implementing message framing atop bytestream-oriented communication protocols like TCP.
  • Presentation conversion issues involving network byte-ordering and parameter marshaling.

To provide developers of communication software with these features, the following higher-level middleware applications are bundled with the ACE release:

 

  1. The ACE ORB (TAO) -- TAO is a real-time implementation of CORBA built using the framework components and patterns provided by ACE. TAO contains the network interface, OS, communication protocol, and CORBA middleware components and features. TAO is based on the standard OMG CORBA reference model, with the enhancements designed to overcome the shortcomings of conventional ORBs for high-performance and real-time applications. TAO, like ACE, is freely available, open source software.

     

  2. JAWS -- JAWS is a high-performance, adaptive Web server built using the framework components and patterns provided by ACE. JAWS is structured as a framework of frameworks. The overall JAWS framework contains the following components and frameworks: an Event Dispatcher, Concurrency Strategy, I/O Strategy, Protocol Pipeline, Protocol Handlers, and Cached Virtual Filesystem. Each framework is structured as a set of collaborating objects implemented by combining and extending components in ACE. JAW is also freely available, open-source software.

     


Back to the ACE home page.

Last modified 11:34:15 CDT 28 September 2006

内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
根据原作 https://pan.quark.cn/s/23d6270309e5 的源码改编 湖北省黄石市2021年中考数学试卷所包含的知识点广泛涉及了中学数学的基础领域,涵盖了实数、科学记数法、分式方程、几何体的三视图、立体几何、概率统计以及代数方程等多个方面。 接下来将对每道试题所关联的知识点进行深入剖析:1. 实数与倒数的定义:该题目旨在检验学生对倒数概念的掌握程度,即一个数a的倒数表达为1/a,因此-7的倒数可表示为-1/7。 2. 科学记数法的运用:科学记数法是一种表示极大或极小数字的方法,其形式为a×10^n,其中1≤|a|<10,n为整数。 此题要求学生运用科学记数法表示一个天文单位的距离,将1.4960亿千米转换为1.4960×10^8千米。 3. 分式方程的求解方法:考察学生解决包含分母的方程的能力,题目要求找出满足方程3/(2x-1)=1的x值,需通过消除分母的方式转化为整式方程进行解答。 4. 三视图的辨认:该题目测试学生对于几何体三视图(主视图、左视图、俯视图)的认识,需要识别出具有两个相同视图而另一个不同的几何体。 5. 立体几何与表面积的计算:题目要求学生计算由直角三角形旋转形成的圆锥的表面积,要求学生对圆锥的底面积和侧面积公式有所了解并加以运用。 6. 统计学的基础概念:题目涉及众数、平均数、极差和中位数的定义,要求学生根据提供的数据信息选择恰当的统计量。 7. 方程的整数解求解:考察学生在实际问题中进行数学建模的能力,通过建立方程来计算在特定条件下帐篷的搭建方案数量。 8. 三角学的实际应用:题目通过在直角三角形中运用三角函数来求解特定线段的长度。 利用正弦定理求解AD的长度是解答该问题的关键。 9. 几何变换的应用:题目要求学生运用三角板的旋转来求解特定点的...
Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究内容概要:本文围绕“Python基于改进粒子群IPSO与LSTM的短期电力负荷预测研究”展开,提出了一种结合改进粒子群优化算法(IPSO)与长短期记忆网络(LSTM)的混合预测模型。通过IPSO算法优化LSTM网络的关键参数(如学习率、隐层节点数等),有效提升了模型在短期电力负荷预测中的精度与收敛速度。文中详细阐述了IPSO算法的改进策略(如引入自适应惯性权重、变异机制等),增强了全局搜索能力与避免早熟收敛,并利用实际电力负荷数据进行实验验证,结果表明该IPSO-LSTM模型相较于传统LSTM、PSO-LSTM等方法在预测准确性(如MAE、RMSE指标)方面表现更优。研究为电力系统调度、能源管理提供了高精度的负荷预测技术支持。; 适合人群:具备一定Python编程基础、熟悉基本机器学习算法的高校研究生、科研人员及电力系统相关领域的技术人员,尤其适合从事负荷预测、智能优化算法应用研究的专业人士。; 使用场景及目标:①应用于短期电力负荷预测,提升电网调度的精确性与稳定性;②为优化算法(如粒子群算法)与深度学习模型(如LSTM)的融合应用提供实践案例;③可用于学术研究、毕业论文复现或电力企业智能化改造的技术参考。; 阅读建议:建议读者结合文中提到的IPSO与LSTM原理进行理论学习,重点关注参数优化机制的设计思路,并动手复现实验部分,通过对比不同模型的预测结果加深理解。同时可拓展尝试将该方法应用于其他时序预测场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值