大数据的数据来源广泛,应用需求和数据类型都不尽相同,但是最基本的处理流程是一致的。
整个大数据的处理流程可以定义为,在合适工具的辅助下,对广泛异构的数据源进行抽取和集成,将结果按照一定的标准进行统一存储,然后利用合适的数据分析技术对存储的数据进行分析,从中提取有益的知识,并利用恰当的方式将结果展现给终端用户。
具体来讲,大数据处理的基本流程可以分为数据抽取与集成、数据分析和数据解释等步骤。
数据抽取与集成
大数据的一个重要特点就是多样性,这就意味着数据来源极其广泛,数据类型极为繁杂。这种复杂的数据环境给大数据的处理带来极大的挑战。
要想处理大数据,首先必须对所需数据源的数据进行抽取和集成,从中提取出数据的实体和关系,经过关联和聚合之后采用统一定义的结构来存储这些数据。
在数据集成和提取时,需要对数据进行清洗,保证数据质量及可信性。同时还要特别注意大数据时代数据模式和数据的关系,大数据时代的数据往往是先有数据再有模式,并且模式是在不断的动态演化之中的。
数据抽取和集成技术并不是一项全新的技术,在传统数据库领域此问题就已经得到了比较成熟的研究。随着新的数据源的涌现,数据集成方法也在不断的发展之中。
从数据集成模型来看,现有的数据抽取与集成方式可以大致分为 4 种类型:基于物化或 ETL 方法的引擎、基于联邦数据库或中间件方法的引擎、基于数据流方法的引擎,以及基于搜索引擎的方法。
数据分析
数据分析是整个大数据处理流程的核心,大数据的价值产生于分析过程。
从异构数据源抽取和集成的数据构成了数据分析的原始数据。根据不同应用的需求可以从这些数据中选择全部或部分进行分析。
小数据时代的分析技术,如统计分析、数据挖掘和机器学习等,并不能适应大数据时代数据分析的需求,必须做出调整。大数据时代的数据分析技术面临着一些新的挑战,主要有以下几点。
1)数据量大并不一定意味着数据价值的增加,相反这往往意味着数据噪音的增多。
因此,在数据分析之前必须进行数据清洗等预处理工作,但是预处理如此大量的数据,对于计算资源和处理算法来讲都是非常严峻的考验。