Beautiful People ZOJ - 2319(单调递增最长子序列)

The most prestigious sports club in one city has exactly N members. Each of its members is strong and beautiful. More precisely, i-th member of this club (members being numbered by the time they entered the club) has strength Si and beauty Bi. Since this is a very prestigious club, its members are very rich and therefore extraordinary people, so they often extremely hate each other. Strictly speaking, i-th member of the club Mr X hates j-th member of the club Mr Y if Si <= Sj and Bi >= Bj or if Si >= Sj and Bi <= Bj (if both properties of Mr X are greater then corresponding properties of Mr Y, he doesn��t even notice him, on the other hand, if both of his properties are less, he respects Mr Y very much).

To celebrate a new 2005 year, the administration of the club is planning to organize a party. However they are afraid that if two people who hate each other would simultaneouly attend the party, after a drink or two they would start a fight. So no two people who hate each other should be invited. On the other hand, to keep the club prestige at the apropriate level, administration wants to invite as many people as possible.

Being the only one among administration who is not afraid of touching a computer, you are to write a program which would find out whom to invite to the party.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input
The first line of the input file contains integer N - the number of members of the club. (2 <= N <= 100 000). Next N lines contain two numbers each - Si and Bi respectively (1 <= Si, Bi <= 109).

Output
On the first line of the output file print the maximum number of the people that can be invited to the party. On the second line output N integers - numbers of members to be invited in arbitrary order. If several solutions exist, output any one.

Sample Input
1

4
1 1
1 2
2 1
2 2

Sample Output
2
1 4

题意 : 每个人有一个S和B值,要求最长的子序列使下一个人的S B值都大于上一个人的S B值

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<math.h>
#include<vector>
#include<iostream>
#define inf 0x3f3f3f3f
#define ll long long
#define N 100000+10
using namespace std;
struct node
{
    int x;
    int s,b;
}a[N];
bool cmp(node n1,node n2)
{
    if(n1.s==n2.s)
        return n1.b>n2.b; //用小的b值来覆盖大的b值
    return n1.s<n2.s;
}
int dp[N];
int mark[N];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&a[i].s,&a[i].b);
            a[i].x=i;
        }
        memset(dp,inf,sizeof(dp));
        sort(a+1,a+1+n,cmp);
        int k=0;
        for(int i=1;i<=n;i++)
        {
            int j=lower_bound(dp+1,dp+1+n,a[i].b)-dp;
            dp[j]=a[i].b;
            mark[i]=j;
            k=max(k,j);
        }
        printf("%d\n",k);
        for(int i=n; i>=1; i--)
        {
            if (mark[i]==k)
            {
                printf("%d ",a[i].x);
                k--;
            }
        }
        printf("\n");
        if(T!=0)
        {
            printf("\n");
        }
    }
}

若是求的子序列 是大于等于的最长自串应该是

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<math.h>
#include<vector>
#include<iostream>
#define inf 0x3f3f3f3f
#define ll long long
#define N 100000+10
using namespace std;
struct node
{
    int x;
    int s,b;
}a[N];
bool cmp(node n1,node n2)
{
    if(n1.s==n2.s)
        return n1.b<n2.b;//
    return n1.s<n2.s;
}
int dp[N];
int mark[N];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&a[i].s,&a[i].b);
            a[i].x=i;
        }
        memset(dp,inf,sizeof(dp));
        sort(a+1,a+1+n,cmp);
        int k=0;
        for(int i=1;i<=n;i++)
        {
            int j=upper_bound(dp+1,dp+1+n,a[i].b)-dp;//
            dp[j]=a[i].b;
            mark[i]=j;
            k=max(k,j);
        }
        printf("%d\n",k);
        for(int i=n; i>=1; i--)
        {
            if (mark[i]==k)
            {
                printf("%d ",a[i].x);
                k--;
            }
        }
        printf("\n");
        if(T!=0)
        {
            printf("\n");
        }
    }
}

【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器状态空间平均模型的建模策略。该方法通过对系统中多个相互耦合的DC-DC变换器进行统一建模,构建出整个微电网的集中状态空间模型,并在此基础上实施线性化处理,便于后续的小信号分析与稳定性研究。文中详细阐述了建模过程中的关键步骤,包括电路拓扑分析、状态变量选取、平均化处理以及雅可比矩阵的推导,终通过Matlab代码实现模型仿真验证,展示了该方法在动态响应分析和控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink仿真工具,从事微电网、新能源系统建模与控制研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网中多变换器系统的统一建模方法;②理解状态空间平均法在非线性电力电子系统中的应用;③实现系统线性化并用于稳定性分析与控制器设计;④通过Matlab代码复现和扩展模型,服务于科研仿真与教学实践。; 阅读建议:建议读者结合Matlab代码逐步理解建模流程,重点关注状态变量的选择与平均化处理的数学推导,同时可尝试修改系统参数或拓扑结构以加深对模型通用性和适应性的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值