洛谷P2184

题目背景

面对蚂蚁们的疯狂进攻,小FF的Tower defence宣告失败……人类被蚂蚁们逼到了Greed Island上的一个海湾。现在,小FF的后方是一望无际的大海, 前方是变异了的超级蚂蚁。 小FF还有大好前程,他可不想命丧于此, 于是他派遣手下最后一批改造SCV布置地雷以阻挡蚂蚁们的进攻。

题目描述

小FF最后一道防线是一条长度为N的战壕, 小FF拥有无数多种地雷,而SCV每次可以在[ L , R ]区间埋放同一种不同于之前已经埋放的地雷。 由于情况已经十万火急,小FF在某些时候可能会询问你在[ L' , R'] 区间内有多少种不同的地雷, 他希望你能尽快的给予答复。

对于30%的数据: 0<=n, m<=1000;

对于100%的数据: 0<=n, m<=10^5.

输入输出格式

输入格式:

 

第一行为两个整数n和m; n表示防线长度, m表示SCV布雷次数及小FF询问的次数总和。

接下来有m行, 每行三个整数Q,L , R; 若Q=1 则表示SCV在[ L , R ]这段区间布上一种地雷, 若Q=2则表示小FF询问当前[ L , R ]区间总共有多少种地雷。

 

输出格式:

 

对于小FF的每次询问,输出一个答案(单独一行),表示当前区间地雷总数。

 

输入输出样例

输入样例#1: 复制

5 4
1 1 3
2 2 5
1 2 4
2 3 5

输出样例#1: 复制

1
2

 输出查询区间(l-r)的小于r的区间头的前缀和-小于l的区间尾的前缀和

#include <bits/stdc++.h> 
using namespace std;
int c1[200000],c2[200000];
int n,m;
int lowbit(int x){
	return x&(-x);
}
void Update1(int x,int s){
	while(x<=n){
		c1[x]=c1[x]+s;
		x=x+lowbit(x);
	}
}
int Sum1(int x){
	int sum=0;
	while(x>0){
		sum+=c1[x];
		x=x-lowbit(x);
	}
	return sum;
}
void Update2(int x,int s){
	while(x<=n){
		c2[x]=c2[x]+s;
		x=x+lowbit(x);
	}
}
int Sum2(int x){
	int sum=0;
	while(x>0){
		sum+=c2[x];
		x=x-lowbit(x);
	}
	return sum;
}
int main(){
	while(scanf("%d %d",&n,&m)!=EOF){
		memset(c2,0,sizeof(c1));//区间的开头 
		memset(c2,0,sizeof(c2));//区间的末尾 
		int a,b,c;
		for(int i=0;i<m;i++){
			scanf("%d %d %d",&a,&b,&c);
			if(a==1){
				Update1(b,1);
				Update2(c,1);
			}
			else{
				printf("%d\n",Sum1(c)-Sum2(b-1));
			}
		}
	}
}

 

### 关于动态规划 (Dynamic Programming, DP) 的解决方案 在解决洛谷平台上的编程问题时,尤其是涉及动态规划的题目,可以采用以下方法来构建解决方案: #### 动态规划的核心思想 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。其核心在于存储重复计算的结果以减少冗余运算。通常情况下,动态规划适用于具有重叠子问题和最优子结构性质的问题。 对于动态规划问题,常见的思路包括定义状态、转移方程以及边界条件的设计[^1]。 --- #### 题目分析与实现案例 ##### **P1421 小玉买文具** 此题是一个典型的简单模拟问题,可以通过循环结构轻松完成。以下是该问题的一个可能实现方式: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; // 输入购买数量n double p, m, c; cin >> p >> m >> c; // 输入单价p,总金额m,优惠券c // 计算总价并判断是否满足条件 if ((double)n * p <= m && (double)(n - 1) * p >= c) { cout << "Yes"; } else { cout << "No"; } return 0; } ``` 上述代码实现了基本逻辑:先读取输入数据,再根据给定约束条件进行验证,并输出最终结果[^2]。 --- ##### **UOJ104 序列分割** 这是一道经典的区间动态规划问题。我们需要设计一个二维数组 `f[i][j]` 表示前 i 次操作后得到的最大价值,其中 j 是最后一次切割的位置。具体实现如下所示: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 5e3 + 5; long long f[MAXN], sumv[MAXN]; int a[MAXN]; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n,k; cin>>n>>k; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++)sumv[i]=sumv[i-1]+a[i]; memset(f,-0x3f,sizeof(f)); f[0]=0; for(int t=1;t<=k;t++){ vector<long long> g(n+1,LLONG_MIN); for(int l=t;l<=n;l++)g[l]=max(g[l-1],f[t-1][l-1]); for(int r=t;r<=n;r++)f[r]=max(f[r],g[r]+sumv[r]*t); } cout<<f[n]<<'\n'; return 0; } ``` 这段程序利用了滚动数组优化空间复杂度,同时保持时间效率不变[^3]。 --- ##### **其他常见问题** 针对更复杂的路径覆盖类问题(如 PXXXX),我们往往需要结合一维或多维动态规划模型加以处理。例如,在某些场景下,我们可以设定 dp 数组记录到达某一点所需最小代价或者最大收益等指标[^4]。 --- ### 总结 以上展示了如何运用动态规划技巧去应对不同类型的算法挑战。无论是基础还是高级应用场合,合理选取合适的数据结构配合清晰的状态转换关系都是成功解决问题的关键所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值