调用智谱AI,面试小助手Flask简单示例

1.接入AI

获取API密钥

在智谱AI的官方网站上注册,右上角点击API密钥,新建并复制一个 API Key,不要在公开的代码中暴露你的API密钥
在这里插入图片描述

Python代码

在Jupyter Notebook中,发送HTTP请求到智谱AI的API,需要提前pip install zhipuai
运行代码,看到 AI 的回复

from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 填写自己的APIKey
response = client.chat.completions.create(
    model="glm-4-0520",  # 填写需要调用的模型编码
    messages=[
        {
   "role": "system", "content": "你是一个乐于解答各种问题的助手,你的任务是为用户提供专业、准确、有见地的建议。"},
        {
   "role": "user", "content": "我对太阳系的行星非常感兴趣,特别是土星。请提供关于土星的基本信息,包括其大小、组成、环系统和任何独特的天文现象。"},
    ],
    stream=True,
)
for chunk in response:
    print(chunk.choices[0].delta)

在这里插入图片描述

2.小助手的实现流程

(1)提供求职者的简历内容,输入给 AI 面试官,让其分析并生成面试问题
(2)将生成的问题逐一输入给 AI 求职者,让其给出答案
(3)对 AI 生成的结果进行组合整理

from zhipuai import ZhipuAI

# 初始化ZhipuAI客户端
client = ZhipuAI(api_key="")  # “”填写自己的APIKey

def generate_interview_questions(resume):
    # 构建系统消息,描述面试官的角色和任务
    system_message = {
   
        "role": "system",
        "content": "你是一位经验丰富的 AI 面试官,下面我会给你一份求职者的简历,请分析简历并提出相关的面试问题。要求输出格式如下,每个问题一行,此外不要有任何多余的内容:{序号}. {面试问题}"
    }
    # 构建用户消息,包含简历内容
    user_message = {
   "role": "user", "content": resume}
    # 调用API生成面试问题
    response = client.chat.completions.create(
        model="glm-4-0520",  # 填写需要调用的模型编码
        messages=[system_message, user_message],
        stream=True,
    )
    
    # 处理API响应,生成面试问题列表
    questions = []
    current_question = ""
    for chunk in response:
        delta = chunk.choices[0].delta
        if delta.content:
            current_question 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dotdotyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值