The set [1,2,3,...,n] contains a total of n! unique permutations.
By listing and labeling all of the permutations in order, we get the following sequence for n = 3:
"123""132""213""231""312""321"
Given n and k, return the kth permutation sequence.
Note:
- Given n will be between 1 and 9 inclusive.
- Given k will be between 1 and n! inclusive.
Example 1:
Input: n = 3, k = 3 Output: "213"
Example 2:
Input: n = 4, k = 9 Output: "2314"
class Solution {
public:
string getPermutation(int n, int k) {
if(n<=0)
return "";
vector<int> num;
for(int i=1; i<=n; i++)
num.push_back(i);
int factorial = 1;
for(int i=2; i<n; i++)
factorial *=i;
int round = n-1;
k--;
string ret = "";
while(round>=0)
{
int index = k/factorial;
k%=factorial;
ret+=to_string(num[index]);
vector<int>::iterator iter=find(num.begin(), num.end(), num[index]);
num.erase(iter);
if(round>0)
factorial/=round;
round--;
}
return ret;
}
};
本文介绍了一种算法,用于找出数字集合[1,2,3,...,n]中第k个唯一排列。通过列举并标记所有可能的排列顺序,可以得到当n=3时的排列序列。该算法使用C++实现,能够处理n在1到9之间的输入,并确保k在1到n!的范围内。
256

被折叠的 条评论
为什么被折叠?



